1. Deep learning–based tumour segmentation and total metabolic tumour volume prediction in the prognosis of diffuse large B-cell lymphoma patients in 3D FDG-PET images
- Author
-
Chong Jiang, Kai Chen, Yue Teng, Chongyang Ding, Zhengyang Zhou, Yang Gao, Junhua Wu, Jian He, Kelei He, and Junfeng Zhang
- Subjects
Deep Learning ,Fluorodeoxyglucose F18 ,Positron-Emission Tomography ,Humans ,Radiology, Nuclear Medicine and imaging ,Lymphoma, Large B-Cell, Diffuse ,General Medicine ,Prognosis ,Retrospective Studies ,Tumor Burden - Abstract
To demonstrate the effectiveness of automatic segmentation of diffuse large B-cell lymphoma (DLBCL) in 3D FDG-PET scans using a deep learning approach and validate its value in prognosis in an external validation cohort.Two PET datasets were retrospectively analysed: 297 patients from a local centre for training and 117 patients from an external centre for validation. A 3D U-Net architecture was trained on patches randomly sampled within the PET images. Segmentation performance was evaluated by six metrics, including the Dice similarity coefficient (DSC), Jaccard similarity coefficient (JSC), sensitivity (Se), positive predictive value (PPV), Hausdorff distance 95 (HD 95), and average symmetric surface distance (ASSD). Finally, the prognostic value of predictive total metabolic tumour volume (pTMTV) was validated in real clinical applications.The mean DSC, JSC, Se, PPV, HD 95, and ASSD (with standard deviation) for the validation cohort were 0.78 ± 0.25, 0.69 ± 0.26, 0.81 ± 0.27, 0.82 ± 0.25, 24.58 ± 35.18, and 4.46 ± 8.92, respectively. The mean ground truth TMTV (gtTMTV) and pTMTV were 276.6 ± 393.5 cmThe FCN model with a U-Net architecture can accurately segment lymphoma lesions and allow fully automatic assessment of TMTV on PET scans for DLBCL patients. Furthermore, pTMTV is an independent prognostic factor of survival in DLBCL patients.•The segmentation model based on a U-Net architecture shows high performance in the segmentation of DLBCL patients on FDG-PET images. •The proposed method can provide quantitative information as a predictive TMTV for predicting the prognosis of DLBCL patients.
- Published
- 2022