1. Detection of SARS-CoV-2 Virus Amplification Using a Crumpled Graphene Field-Effect Transistor Biosensor
- Author
-
Insu Park, Jongwon Lim, Seungyong You, Michael Taeyoung Hwang, Jaehong Kwon, Katherine Koprowski, Sungdae Kim, John Heredia, Sarah A. Stewart de Ramirez, Enrique Valera, and Rashid Bashir
- Subjects
Fluid Flow and Transfer Processes ,crumpled graphene FET biosensor ,SARS-CoV-2 ,Process Chemistry and Technology ,COVID-19 ,Bioengineering ,Biosensing Techniques ,flat graphene FET biosensor ,Sensitivity and Specificity ,Article ,Humans ,Graphite ,VTM clinical samples ,Instrumentation ,Pandemics ,RT-LAMP - Abstract
The rapid and unexpected spread of SARS-CoV-2 worldwide has caused unprecedented disruption to daily life and has brought forward critical challenges for public health. The disease was the largest cause of death in the United States in early 2021. Likewise, the COVID-19 pandemic has highlighted the need for rapid and accurate diagnoses at scales larger than ever before. To improve the availability of current gold standard diagnostic testing methods, the development of point-of-care devices that can maintain gold standard sensitivity while reducing the cost and providing portability is much needed. In this work, we combine the amplification capabilities of reverse transcriptase loop-mediated isothermal amplification (RT-LAMP) techniques with high-sensitivity end-point detection of crumpled graphene field-effect transistors (cgFETs) to develop a portable detection cell. This electrical detection method takes advantage of the ability of graphene to adsorb single-stranded DNA due to noncovalent π–π bonds but not double-stranded DNA. These devices have demonstrated the ability to detect the presence of the SARS-CoV-2 virus in a range from 10 to 104 copies/μL in 20 viral transport medium (VTM) clinical samples. As a result, we achieved 100% PPV, NPV, sensitivity, and specificity with 10 positive and 10 negative VTM clinical samples. Further, the cgFET devices can differentiate between positive and negative VTM clinical samples in 35 min based on the Dirac point shift. Likewise, the improved sensing capabilities of the crumpled gFET were compared with those of the traditional flat gFET devices.
- Published
- 2021