1. Multimodal Response to Copper Binding in Superoxide Dismutase Dynamics
- Author
-
Lyndon Emsley, Guido Pintacuda, Roberta Pierattelli, Tobias Schubeis, Marta Bonaccorsi, Hugh R W Dannatt, Michael J. Knight, Tanguy Le Marchand, Loïc Salmon, Isabella C. Felli, Centre de RMN à très hauts champs de Lyon (CRMN), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université de Florence, Università degli Studi di Firenze = University of Florence [Firenze] (UNIFI), Ecole Polytechnique Fédérale de Lausanne (EPFL), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), and Università degli Studi di Firenze = University of Florence (UniFI)
- Subjects
Models, Molecular ,Magnetic Resonance Spectroscopy ,Protein Conformation ,[SDV]Life Sciences [q-bio] ,chemistry.chemical_element ,Zinc ,010402 general chemistry ,01 natural sciences ,Biochemistry ,Catalysis ,Superoxide dismutase ,Colloid and Surface Chemistry ,Protein structure ,Metalloproteins ,Side chain ,Humans ,[CHIM]Chemical Sciences ,Histidine ,Binding site ,Binding Sites ,biology ,Superoxide Dismutase ,Chemistry ,Amyotrophic Lateral Sclerosis ,General Chemistry ,Nuclear magnetic resonance spectroscopy ,Copper ,0104 chemical sciences ,Kinetics ,Magnetic Fields ,Biophysics ,biology.protein ,Protein Multimerization ,Crystallization - Abstract
International audience; Copper/zinc superoxide dismutase (SOD) is a homodimeric metalloenzyme which has been extensively studied as a benchmark for structure-function relationships in proteins, in particular because of its implication in the familial form of the neurodegenerative disease amyotrophic lateral sclerosis. Here, we investigate microcrystalline preparations of two differently metallated forms of SOD, namely the fully mature functional Cu I ,Zn state and the E,Zn-SOD state in which the Cu site is empty. By using solid-state NMR with fast magic-angle spinning (MAS) at high magnetic fields (1 H Larmor frequency of 800-1000 MHz), we quantify motions spanning a dynamic range from ns to ms. We determine that metal ion uptake does not act as a rigidification element but as a switch redistributing motional processes on different timescales, with coupling of the dynamics of histidine sidechains and those of remote key backbone elements of the protein.
- Published
- 2020
- Full Text
- View/download PDF