1. A Versatile Polypharmacology Platform Promotes Cytoprotection and Viability of Human Pluripotent and Differentiated Cells
- Author
-
Pinar Ormanoglu, Ilyas Singeç, Jaroslav Slamecka, Pei-Hsuan Chu, Christopher A. LeClair, Vukasin M. Jovanovic, Tao Deng, Yu Chen, Anton Simeonov, Carlos A. Tristan, Seungmi Ryu, Sam Michael, Claire Malley, Christopher P. Austin, Dingyin Tao, Yuhong Fang, Lu Chen, and Hyenjong Hong
- Subjects
Pluripotent Stem Cells ,Cell Survival ,Polypharmacology ,Cellular differentiation ,Cell ,Cell Culture Techniques ,Embryoid body ,Biology ,Biochemistry ,Article ,03 medical and health sciences ,Cryoprotective Agents ,Genome editing ,medicine ,Humans ,Induced pluripotent stem cell ,Molecular Biology ,030304 developmental biology ,Cloning ,Cryopreservation ,0303 health sciences ,rho-Associated Kinases ,Cell Differentiation ,Cell Biology ,Cytoprotection ,Cell biology ,High-Throughput Screening Assays ,medicine.anatomical_structure ,Gene Expression Regulation ,Cell culture ,Biotechnology - Abstract
Clinical translation of human pluripotent stem cells (hPSCs) requires advanced strategies that ensure safe and robust long-term growth and functional differentiation. Pluripotent cells are capable of extensive self-renewal, yet remain highly sensitive to environmental perturbations in vitro, posing challenges to their therapeutic use. Here, we deployed innovative high-throughput screening strategies to identify a small molecule cocktail that dramatically improves viability of hPSCs and their differentiated progeny. The combination of Chroman 1, Emricasan, Polyamines, and Trans-ISRIB (CEPT) enhanced cell survival of genetically stable hPSCs by simultaneously blocking several stress mechanisms that otherwise compromise cell structure and function. CEPT provided strong improvements for several key applications in stem cell research, including routine cell passaging, cryopreservation of pluripotent and differentiated cells, embryoid body (EB) and organoid formation, single-cell cloning, and genome editing. Thus, CEPT represents a unique polypharmacology strategy for comprehensive cytoprotection, providing a new rationale for efficient and safe utilization of hPSCs. Conferring cell fitness by multi-target drug combinations may become a common approach in cryobiology, drug development, and regenerative medicine.
- Published
- 2021