1. Attenuated fusogenicity and pathogenicity of SARS-CoV-2 Omicron variant
- Author
-
Kei Sato, Rigel Suzuki, Daichi Yamasoba, Izumi Kimura, Lei Wang, Mai Kishimoto, Jumpei Ito, Yuhei Morioka, Naganori Nao, Hesham Nasser, Keiya Uriu, Yusuke Kosugi, Masumi Tsuda, Yasuko Orba, Michihito Sasaki, Ryo Shimizu, Ryoko Kawabata, Kumiko Yoshimatsu, Hiroyuki Asakura, Mami Nagashima, Kenji Sadamasu, Kazuhisa Yoshimura, Hirofumi Sawa, Terumasa Ikeda, Takashi Irie, Keita Matsuno, Shinya Tanaka, and Takasuke Fukuhara
- Subjects
Male ,Multidisciplinary ,Mesocricetus ,Virulence ,SARS-CoV-2 ,viruses ,COVID-19 ,In Vitro Techniques ,Virus Internalization ,Virus Replication ,Membrane Fusion ,Cell Line ,South Africa ,Cricetinae ,Mutation ,Spike Glycoprotein, Coronavirus ,Animals ,Humans ,Lung - Abstract
The emergence of the Omicron variant of SARS-CoV-2 is an urgent global health concern1. In this study, our statistical modelling suggests that Omicron has spread more rapidly than the Delta variant in several countries including South Africa. Cell culture experiments showed Omicron to be less fusogenic than Delta and than an ancestral strain of SARS-CoV-2. Although the spike (S) protein of Delta is efficiently cleaved into two subunits, which facilitates cell–cell fusion2,3, the Omicron S protein was less efficiently cleaved compared to the S proteins of Delta and ancestral SARS-CoV-2. Furthermore, in a hamster model, Omicron showed decreased lung infectivity and was less pathogenic compared to Delta and ancestral SARS-CoV-2. Our multiscale investigations reveal the virological characteristics of Omicron, including rapid growth in the human population, lower fusogenicity and attenuated pathogenicity.
- Published
- 2022