1. Validation of Myc-Associated Protein X (MAX) regulation in growth hormone secreting and nonfunctional pituitary adenoma.
- Author
-
Tucker DW, Pangal DJ, Du R, Gogia AS, Tafreshi A, Ruzevick J, Hurth KT, Triche T Jr, Micko A, Carpten JD, Shiroishi MS, Carmichael JD, Rhie SK, and Zada G
- Subjects
- Humans, Growth Hormone, Adenoma pathology, Growth Hormone-Secreting Pituitary Adenoma genetics, Growth Hormone-Secreting Pituitary Adenoma complications, Human Growth Hormone, Pituitary Neoplasms pathology
- Abstract
Introduction: Many patients with growth hormone-secreting pituitary adenoma (GHPA) fail to achieve biochemical remission, warranting investigation into epigenetic and molecular signatures associated with tumorigenesis and hormonal secretion. Prior work exploring the DNA methylome showed Myc-Associated Protein X (MAX), a transcription factor involved in cell cycle regulation, was differentially methylated between GHPA and nonfunctional pituitary adenoma (NFPA). We aimed to validate the differential DNA methylation and related MAX protein expression profiles between NFPA and GHPA., Methods: DNA methylation levels were measured in 52 surgically resected tumors (37 NFPA, 15 GHPA) at ~100,000 known MAX binding sites derived using ChIP-seq analysis from ENCODE. Findings were correlated with MAX protein expression using a constructed tissue microarray (TMA). Gene ontology analysis was performed to explore downstream genetic and signaling pathways regulated by MAX., Results: GHPA had more hypomethylation events across all known MAX binding sites. Of binding sites defined using ChIP-seq analysis, 1,551 sites had significantly different methylation patterns between the two cohorts; 432 occurred near promoter regions potentially regulated by MAX, including promoters of TNF and MMP9. Gene ontology analysis suggested enrichment in genes involved in oxygen response, immune system regulation, and cell proliferation. Thirteen MAX binding sites were within coding regions of genes. GHPA demonstrated significantly increased expression of MAX protein compared to NFPA., Conclusion: GHPA have significantly different DNA methylation and downstream protein expression levels of MAX compared to NFPA. These differences may influence mechanisms involved with cellular proliferation, tumor invasion and hormonal secretion., Competing Interests: The authors have declared that no competing interests exist., (Copyright: © 2023 Tucker et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
- Published
- 2023
- Full Text
- View/download PDF