1. Methylphenidate disrupts cytoskeletal homeostasis and reduces membrane-associated lipid content in juvenile rat hippocampus.
- Author
-
Schmitz F, Pierozan P, Biasibetti-Brendler H, Ferreira FS, Dos Santos Petry F, Trindade VMT, Pessoa-Pureur R, and Wyse ATS
- Subjects
- Animals, Central Nervous System Stimulants pharmacology, Glial Fibrillary Acidic Protein metabolism, Hippocampus metabolism, Lipids, Male, Rats, Wistar, Cytoskeleton drug effects, Hippocampus drug effects, Homeostasis drug effects, Lipid Metabolism drug effects, Methylphenidate pharmacology
- Abstract
Although methylphenidate (MPH) is ubiquitously prescribed to children and adolescents, the consequences of chronic utilization of this psychostimulant are poorly understood. In this study, we investigated the effects of MPH on cytoskeletal homeostasis and lipid content in rat hippocampus. Wistar rats received intraperitoneal injections of MPH (2.0 mg/kg) or saline solution (controls), once a day, from the 15th to the 44th day of age. Results showed that MPH provoked hypophosphorylation of glial fibrillary acidic protein (GFAP) and reduced its immunocontent. Middle and high molecular weight neurofilament subunits (NF-M, NF-H) were hypophosphorylated by MPH on KSP repeat tail domains, while NFL, NFM and NFH immunocontents were not altered. MPH increased protein phosphatase 1 (PP1) and 2A (PP2A) immunocontents. MPH also decreased the total content of ganglioside and phospholipid, as well as the main brain gangliosides (GM1, GD1a, and GD1b) and the major brain phospholipids (sphingomyelin, phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, and phosphatidylserine). Total cholesterol content was also reduced in the hippocampi of juvenile rats treated with MPH. These results provide evidence that disruptions of cytoskeletal and lipid homeostasis in hippocampus of juvenile rats are triggers by chronic MPH treatment and present a new basis for understanding the effects and consequences associated with chronic use of this psychostimulant during the development of the central nervous system.
- Published
- 2018
- Full Text
- View/download PDF