1. Discovery of novel diarypyrimidine derivatives bearing six-membered non-aromatic heterocycles as potent HIV-1 NNRTIs with improved anti-resistance and drug-like profiles.
- Author
-
Jiang X, Huang B, Zalloum WA, Chen CH, Ji X, Gao Z, Dai J, Xie M, Kang D, De Clercq E, Pannecouque C, Liu X, and Zhan P
- Subjects
- HIV Reverse Transcriptase, Reverse Transcriptase Inhibitors pharmacology, Reverse Transcriptase Inhibitors chemistry, Structure-Activity Relationship, Anti-HIV Agents pharmacology, Anti-HIV Agents chemistry, HIV-1 metabolism
- Abstract
Taking our previously reported HIV-1 NNRTIs BH-11c and XJ-10c as lead compounds, series of novel diarypyrimidine derivatives bearing six-membered non-aromatic heterocycles were designed to improve anti-resistance and drug-like profiles. According to the three rounds of in vitro antiviral activity screening, compound 12g was the most active inhibitor against wild-type and five prevalent NNRTI-resistant HIV-1 strains with EC
50 values ranging from 0.024 to 0.0010 μM. This is obviously better than the lead compound BH-11c and the approved drug ETR. Detailed structure-activity relationship was investigated to provide valuable guidance for further optimization. The MD simulation study indicated that 12g could form additional interactions with residues around the binding site in HIV-1 RT, which provided reasonable explanations for its improved anti-resistance profile compared to ETR. Furthermore, 12g showed significant improvement in water solubility and other drug-like properties compared to ETR. The CYP enzymatic inhibitory assay indicated that 12g was unlikely to induce CYP-mediated drug-drug interactions. 12g pharmacokinetics parameters were investigated and it displayed a long half-life of 6.59 h in vivo. The properties of compound 12g make it a promising lead compound for the development of new generation of antiretroviral drugs., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023. Published by Elsevier Masson SAS.)- Published
- 2023
- Full Text
- View/download PDF