1. Impact of the HIV-1 Genetic Background and HIV-1 Population Size on the Evolution of Raltegravir Resistance
- Author
-
Bernd Buchholz, Axel Fun, Elizabeth H. Gisolf, Alexander Thielen, Martin Daumer, Andy I. M. Hoepelman, Monique Nijhuis, Annemarie M. J. Wensing, Linos Vandekerckhove, Thomas Leitner, and Pauline J. Schipper
- Subjects
0301 basic medicine ,Integrase inhibitor ,HIV Infections ,HIV Integrase ,Drug resistance ,CROSS-RESISTANCE ,THERAPY ,Medicine and Health Sciences ,Coding region ,Treatment Failure ,Genetics ,education.field_of_study ,biology ,High-Throughput Nucleotide Sequencing ,Viral Load ,Biological Evolution ,3. Good health ,Integrase ,Infectious Diseases ,STRAND TRANSFER ,RNA, Viral ,Genetic Background ,medicine.drug ,lcsh:Immunologic diseases. Allergy ,ANTIRETROVIRAL-EXPERIENCED PATIENTS ,Anti-HIV Agents ,Population ,REPLICATION CAPACITY ,Deep sequencing ,Virus ,HIV-1-INFECTED PATIENTS ,Cell Line ,03 medical and health sciences ,Raltegravir Potassium ,Virology ,Drug Resistance, Viral ,INTEGRASE INHIBITOR RESISTANCE ,medicine ,Humans ,HIV Integrase Inhibitors ,Selection, Genetic ,education ,DRUG-RESISTANCE ,Population Density ,MUTATIONS ,Research ,Biology and Life Sciences ,IN-VITRO ,Raltegravir ,030104 developmental biology ,Amino Acid Substitution ,HIV-1 ,biology.protein ,lcsh:RC581-607 - Abstract
Background Emergence of resistance against integrase inhibitor raltegravir in human immunodeficiency virus type 1 (HIV-1) patients is generally associated with selection of one of three signature mutations: Y143C/R, Q148K/H/R or N155H, representing three distinct resistance pathways. The mechanisms that drive selection of a specific pathway are still poorly understood. We investigated the impact of the HIV-1 genetic background and population dynamics on the emergence of raltegravir resistance. Using deep sequencing we analyzed the integrase coding sequence (CDS) in longitudinal samples from five patients who initiated raltegravir plus optimized background therapy at viral loads > 5000 copies/ml. To investigate the role of the HIV-1 genetic background we created recombinant viruses containing the viral integrase coding region from pre-raltegravir samples from two patients in whom raltegravir resistance developed through different pathways. The in vitro selections performed with these recombinant viruses were designed to mimic natural population bottlenecks. Results Deep sequencing analysis of the viral integrase CDS revealed that the virological response to raltegravir containing therapy inversely correlated with the relative amount of unique sequence variants that emerged suggesting diversifying selection during drug pressure. In 4/5 patients multiple signature mutations representing different resistance pathways were observed. Interestingly, the resistant population can consist of a single resistant variant that completely dominates the population but also of multiple variants from different resistance pathways that coexist in the viral population. We also found evidence for increased diversification after stronger bottlenecks. In vitro selections with low viral titers, mimicking population bottlenecks, revealed that both recombinant viruses and HXB2 reference virus were able to select mutations from different resistance pathways, although typically only one resistance pathway emerged in each individual culture. Conclusions The generation of a specific raltegravir resistant variant is not predisposed in the genetic background of the viral integrase CDS. Typically, in the early phases of therapy failure the sequence space is explored and multiple resistance pathways emerge and then compete for dominance which frequently results in a switch of the dominant population over time towards the fittest variant or even multiple variants of similar fitness that can coexist in the viral population.
- Published
- 2018