5 results on '"Lundegaard, C"'
Search Results
2. MHC class II epitope predictive algorithms.
- Author
-
Nielsen M, Lund O, Buus S, and Lundegaard C
- Subjects
- Animals, Epitopes chemistry, Epitopes genetics, Histocompatibility Antigens Class II chemistry, Histocompatibility Antigens Class II genetics, Humans, Protein Binding immunology, Computational Biology methods, Epitopes immunology, Epitopes metabolism, Histocompatibility Antigens Class II immunology, Histocompatibility Antigens Class II metabolism
- Abstract
Summary: Major histocompatibility complex class II (MHC-II) molecules sample peptides from the extracellular space, allowing the immune system to detect the presence of foreign microbes from this compartment. To be able to predict the immune response to given pathogens, a number of methods have been developed to predict peptide-MHC binding. However, few methods other than the pioneering TEPITOPE/ProPred method have been developed for MHC-II. Despite recent progress in method development, the predictive performance for MHC-II remains significantly lower than what can be obtained for MHC-I. One reason for this is that the MHC-II molecule is open at both ends allowing binding of peptides extending out of the groove. The binding core of MHC-II-bound peptides is therefore not known a priori and the binding motif is hence not readily discernible. Recent progress has been obtained by including the flanking residues in the predictions. All attempts to make ab initio predictions based on protein structure have failed to reach predictive performances similar to those that can be obtained by data-driven methods. Thousands of different MHC-II alleles exist in humans. Recently developed pan-specific methods have been able to make reasonably accurate predictions for alleles that were not included in the training data. These methods can be used to define supertypes (clusters) of MHC-II alleles where alleles within each supertype have similar binding specificities. Furthermore, the pan-specific methods have been used to make a graphical atlas such as the MHCMotifviewer, which allows for visual comparison of specificities of different alleles.
- Published
- 2010
- Full Text
- View/download PDF
3. Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method.
- Author
-
Nielsen M, Lundegaard C, and Lund O
- Subjects
- Algorithms, Alleles, Amino Acid Motifs, Amino Acid Sequence, Animals, Databases, Genetic, Epitopes, HLA-DR Antigens chemistry, HLA-DR Antigens immunology, Humans, Inhibitory Concentration 50, Mice, Monte Carlo Method, Peptides chemistry, Peptides immunology, Predictive Value of Tests, Protein Binding, Reproducibility of Results, Sequence Alignment, Histocompatibility Antigens Class II chemistry, Histocompatibility Antigens Class II immunology, Sequence Analysis, Protein methods
- Abstract
Background: Antigen presenting cells (APCs) sample the extra cellular space and present peptides from here to T helper cells, which can be activated if the peptides are of foreign origin. The peptides are presented on the surface of the cells in complex with major histocompatibility class II (MHC II) molecules. Identification of peptides that bind MHC II molecules is thus a key step in rational vaccine design and developing methods for accurate prediction of the peptide:MHC interactions play a central role in epitope discovery. The MHC class II binding groove is open at both ends making the correct alignment of a peptide in the binding groove a crucial part of identifying the core of an MHC class II binding motif. Here, we present a novel stabilization matrix alignment method, SMM-align, that allows for direct prediction of peptide:MHC binding affinities. The predictive performance of the method is validated on a large MHC class II benchmark data set covering 14 HLA-DR (human MHC) and three mouse H2-IA alleles., Results: The predictive performance of the SMM-align method was demonstrated to be superior to that of the Gibbs sampler, TEPITOPE, SVRMHC, and MHCpred methods. Cross validation between peptide data set obtained from different sources demonstrated that direct incorporation of peptide length potentially results in over-fitting of the binding prediction method. Focusing on amino terminal peptide flanking residues (PFR), we demonstrate a consistent gain in predictive performance by favoring binding registers with a minimum PFR length of two amino acids. Visualizing the binding motif as obtained by the SMM-align and TEPITOPE methods highlights a series of fundamental discrepancies between the two predicted motifs. For the DRB1*1302 allele for instance, the TEPITOPE method favors basic amino acids at most anchor positions, whereas the SMM-align method identifies a preference for hydrophobic or neutral amino acids at the anchors., Conclusion: The SMM-align method was shown to outperform other state of the art MHC class II prediction methods. The method predicts quantitative peptide:MHC binding affinity values, making it ideally suited for rational epitope discovery. The method has been trained and evaluated on the, to our knowledge, largest benchmark data set publicly available and covers the nine HLA-DR supertypes suggested as well as three mouse H2-IA allele. Both the peptide benchmark data set, and SMM-align prediction method (NetMHCII) are made publicly available.
- Published
- 2007
- Full Text
- View/download PDF
4. Improved prediction of MHC class I and class II epitopes using a novel Gibbs sampling approach.
- Author
-
Nielsen M, Lundegaard C, Worning P, Hvid CS, Lamberth K, Buus S, Brunak S, and Lund O
- Subjects
- Binding Sites, Epitopes, T-Lymphocyte immunology, Histocompatibility Antigens Class I immunology, Histocompatibility Antigens Class II immunology, Major Histocompatibility Complex immunology, Protein Binding, Protein Interaction Mapping methods, Reproducibility of Results, Sensitivity and Specificity, Algorithms, Epitopes, T-Lymphocyte chemistry, Histocompatibility Antigens Class I chemistry, Histocompatibility Antigens Class II chemistry, Sequence Alignment methods, Sequence Analysis, Protein methods
- Abstract
Motivation: Prediction of which peptides will bind a specific major histocompatibility complex (MHC) constitutes an important step in identifying potential T-cell epitopes suitable as vaccine candidates. MHC class II binding peptides have a broad length distribution complicating such predictions. Thus, identifying the correct alignment is a crucial part of identifying the core of an MHC class II binding motif. In this context, we wish to describe a novel Gibbs motif sampler method ideally suited for recognizing such weak sequence motifs. The method is based on the Gibbs sampling method, and it incorporates novel features optimized for the task of recognizing the binding motif of MHC classes I and II. The method locates the binding motif in a set of sequences and characterizes the motif in terms of a weight-matrix. Subsequently, the weight-matrix can be applied to identifying effectively potential MHC binding peptides and to guiding the process of rational vaccine design., Results: We apply the motif sampler method to the complex problem of MHC class II binding. The input to the method is amino acid peptide sequences extracted from the public databases of SYFPEITHI and MHCPEP and known to bind to the MHC class II complex HLA-DR4(B1*0401). Prior identification of information-rich (anchor) positions in the binding motif is shown to improve the predictive performance of the Gibbs sampler. Similarly, a consensus solution obtained from an ensemble average over suboptimal solutions is shown to outperform the use of a single optimal solution. In a large-scale benchmark calculation, the performance is quantified using relative operating characteristics curve (ROC) plots and we make a detailed comparison of the performance with that of both the TEPITOPE method and a weight-matrix derived using the conventional alignment algorithm of ClustalW. The calculation demonstrates that the predictive performance of the Gibbs sampler is higher than that of ClustalW and in most cases also higher than that of the TEPITOPE method.
- Published
- 2004
- Full Text
- View/download PDF
5. Definition of supertypes for HLA molecules using clustering of specificity matrices.
- Author
-
Lund O, Nielsen M, Kesmir C, Petersen AG, Lundegaard C, Worning P, Sylvester-Hvid C, Lamberth K, Røder G, Justesen S, Buus S, and Brunak S
- Subjects
- Amino Acid Motifs, Cluster Analysis, Humans, Markov Chains, Histocompatibility Antigens Class I classification, Histocompatibility Antigens Class II classification
- Abstract
Major histocompatibility complex (MHC) proteins are encoded by extremely polymorphic genes and play a crucial role in immunity. However, not all genetically different MHC molecules are functionally different. Sette and Sidney (1999) have defined nine HLA class I supertypes and showed that with only nine main functional binding specificities it is possible to cover the binding properties of almost all known HLA class I molecules. Here we present a comprehensive study of the functional relationship between all HLA molecules with known specificities in a uniform and automated way. We have developed a novel method for clustering sequence motifs. We construct hidden Markov models for HLA class I molecules using a Gibbs sampling procedure and use the similarities among these to define clusters of specificities. These clusters are extensions of the previously suggested ones. We suggest splitting some of the alleles in the A1 supertype into a new A26 supertype, and some of the alleles in the B27 supertype into a new B39 supertype. Furthermore the B8 alleles may define their own supertype. We also use the published specificities for a number of HLA-DR types to define clusters with similar specificities. We report that the previously observed specificities of these class II molecules can be clustered into nine classes, which only partly correspond to the serological classification. We show that classification of HLA molecules may be done in a uniform and automated way. The definition of clusters allows for selection of representative HLA molecules that can cover the HLA specificity space better. This makes it possible to target most of the known HLA alleles with known specificities using only a few peptides, and may be used in construction of vaccines. Supplementary material is available at http://www.cbs.dtu.dk/researchgroups/immunology/supertypes.html.
- Published
- 2004
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.