1. SU(3) analysis of four-quark operators: $K\to\pi\pi$ and vacuum matrix elements
- Author
-
Antonio Pich, Antonio Rodríguez-Sánchez, Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), and Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Quark ,Nuclear and High Energy Physics ,Particle physics ,dispersion relation ,Hadron ,Lattice (group) ,QC770-798 ,01 natural sciences ,operator product expansion ,Matrix (mathematics) ,symmetry: chiral ,Kaon Physics ,High Energy Physics - Lattice ,effective field theory ,Nuclear and particle physics. Atomic energy. Radioactivity ,Dispersion relation ,0103 physical sciences ,CP: violation ,010306 general physics ,numerical calculations ,lattice ,Physics ,010308 nuclear & particles physics ,[PHYS.HLAT]Physics [physics]/High Energy Physics - Lattice [hep-lat] ,High Energy Physics::Phenomenology ,Observable ,Effective Field Theories ,perturbation theory: chiral ,Link (geometry) ,High Energy Physics - Phenomenology ,CP violation ,[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph] ,Chiral Lagrangians ,quark: four-fermion interaction ,High Energy Physics::Experiment ,flavor: SU(3) ,+pi+pi%22">K --> pi pi ,K: hadronic decay ,spectral representation - Abstract
Hadronic matrix elements of local four-quark operators play a central role in non-leptonic kaon decays, while vacuum matrix elements involving the same kind of operators appear in inclusive dispersion relations, such as those relevant in $\tau$-decay analyses. Using an $SU(3)_L\otimes SU(3)_R$ decomposition of the operators, we derive generic relations between these matrix elements, extending well-known results that link observables in the two different sectors. Two relevant phenomenological applications are presented. First, we determine the electroweak-penguin contribution to the kaon CP-violating ratio $\varepsilon'/\varepsilon$, using the measured hadronic spectral functions in $\tau$ decay. Second, we fit our $SU(3)$ dynamical parameters to the most recent lattice data on $K\to\pi\pi$ matrix elements. The comparison of this numerical fit with results from previous analytical approaches provides an interesting anatomy of the $\Delta I = \frac{1}{2}$ enhancement, confirming old suggestions about its underlying dynamical origin., Comment: 46 pages, 7 figures. Published version
- Published
- 2021