1. Measurement of the cross section for tt¯ production with additional jets and b jets in pp collisions at √s = 13 TeV
- Author
-
Cabrillo, I. J., Calderon, Alicia, Chazin Quero, B., Duarte Campderros, J., Fernández, M., Fernández Manteca, P. J., García Alonso, A., Gómez, G., Martínez-Rivero, Celso, Martínez Ruiz del Arbol, P., Matorras, Francisco, Piedra, Jonatan, Prieels, C., Rodrigo, Teresa, Ruiz Jimeno, Alberto, Russo, L., Scodellaro, Luca, Vila, Iván, Vizán, J., SCOAP, Ministerio de Economía y Competitividad (España), Principado de Asturias, European Commission, and European Research Council
- Subjects
High Energy Physics::Phenomenology ,High Energy Physics::Experiment ,Astrophysics::Earth and Planetary Astrophysics ,Nuclear Experiment - Abstract
Measurements of the cross section for the production of top quark pairs in association with a pair of jets from bottom quarks (σtt¯bb¯¯¯) and in association with a pair of jets from quarks of any flavor or gluons (σtt¯jj) and their ratio are presented. The data were collected in proton-proton collisions at a center-of-mass energy of 13 TeV by the CMS experiment at the LHC in 2016 and correspond to an integrated luminosity of 35.9 fb−1. The measurements are performed in a fiducial phase space and extrapolated to the full phase space, separately for the dilepton and lepton+jets channels, where lepton corresponds to either an electron or a muon. The results of the measurements in the fiducial phase space for the dilepton and lepton+jets channels, respectively, are σtt¯jj = 2.36±0.02 (stat)±0.20 (syst) pb and 31.0±0.2 (stat)±2.9 (syst) pb, and for the cross section ratio 0.017 ± 0.001 (stat) ± 0.001 (syst) and 0.020 ± 0.001 (stat) ± 0.001 (syst). The values of σtt¯bb¯¯¯ are determined from the product of the σtt¯jj and the cross section ratio, obtaining, respectively, 0.040±0.002 (stat)±0.005 (syst) pb and 0.62±0.03 (stat)±0.07 (syst) pb. These measurements are the most precise to date and are consistent, within the uncertainties, with the standard model expectations obtained using a matrix element calculation at next-to-leading order in quantum chromodynamics matched to a parton shower., Article funded by SCOAP3., Individuals have received support from the Marie-Curie program and the European Research Council and Horizon 2020 Grant, contract Nos. 675440, 752730, and 765710 (European Union); the Leventis Foundation; the A.P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation a la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the F.R.S.-FNRS and FWO (Belgium) under the “Excellence of Science — EOS” — be.h project n. 30820817; the Beijing Municipal Science & Technology Commission, No. Z191100007219010; the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Deutsche Forschungsgemeinschaft (DFG) under Germany’s Excellence Strategy — EXC 2121 “Quantum Universe” — 390833306; the Lend¨ulet (“Momentum”) Program and the Janos Bolyai Research Scholarship of the Hungarian Academy of Sciences, the New National Excellence Program UNKP, the NKFIA research grants 123842, 123959, 124845, 124850, 125105, 128713, 128786, and 129058 (Hungary); the Council of Science and Industrial Research, India; the HOMING PLUS program of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus program of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406; the National Priorities Research Program by Qatar National Research Fund; the Ministry of Science and Education, grant no. 14.W03.31.0026 (Russia); the Tomsk Polytechnic University Competitiveness Enhancement Program and “Nauka” Project FSWW-2020−0008 (Russia); the Programa Estatal de Fomento de la Investigacion Cientifica y Tecnica de Excelencia Maria de Maeztu, grant MDM-2015−0509 and the Programa Severo Ochoa del Principado de Asturias; the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek NSRF; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); the Kavli Foundation; the Nvidia Corporation; the SuperMicro Corporation; the Welch Foundation, contract C-1845; and the Weston Havens Foundation (U.S.A.).
- Published
- 2020