1. Tg1.4HBV-s-rec mice, a crossbred hepatitis B virus-transgenic model, develop mild hepatitis.
- Author
-
Schefczyk S, Luo X, Liang Y, Hasenberg M, Walkenfort B, Trippler M, Schuhenn J, Sutter K, Lu M, Wedemeyer H, Schmidt HH, and Broering R
- Subjects
- Mice, Animals, Hepatitis B virus physiology, Hepatitis B Surface Antigens genetics, Hepatitis B Core Antigens, Hepatitis B e Antigens genetics, Hepatitis B Antigens, Virus Replication, Mice, Transgenic, DNA, Viral, Liver, Hepatitis A, Hepatitis B
- Abstract
Hepatitis B virus (HBV)-transgenic mice exhibit competent innate immunity and are therefore an ideal model for considering intrinsic or cell-based mechanisms in HBV pathophysiology. A highly replicative model that has been little used, let alone characterized, is the Tg1.4HBV-s-rec strain derived from cross breeding of HBV-transgenic mouse models that either accumulate (Alb/HBs, Tg[Alb1-HBV]Bri44) or lack (Tg1.4HBV-s-mut) the hepatitis B surface antigen (HBsAg). Tg1.4HBV-s-rec hepatocytes secreted HBsAg, Hepatitis B extracellular antigen (HBeAg) and produced HBV virions. Transmission electron microscopy visualised viral particles (Tg1.4HBV-s-rec), nuclear capsid formations (Tg1.4HBV-s-mut and Tg1.4HBV-s-rec) and endoplasmic reticulum malformations (Alb/HBs). Viral replication in Tg1.4HBV-s-rec and Tg1.4HBV-s-mut differed in HBsAg expression and interestingly in the distribution of HBV core antigen (HBcAg) and HBV × protein. While in Tg1.4HBV-s-mut hepatocytes, the HBcAg was located in the cytoplasm, in Tg1.4HBV-s-rec hepatocytes, the HBcAg appeared in the nuclei, suggesting a more productive replication. Finally, Tg1.4HBV-s-rec mice showed symptoms of mild hepatitis, with reduced liver function and elevated serum transaminases, which appeared to be related to natural killer T cell activation. In conclusion, the study of Alb/HBs, Tg1.4HBV-s-mut and their F1 progeny provides a powerful tool to elucidate HBV pathophysiology, especially in the early HBeAg-positive phases of chronic infection and chronic hepatitis., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF