5 results on '"Breitkopf-Heinlein, Katja"'
Search Results
2. BMP-9 interferes with liver regeneration and promotes liver fibrosis.
- Author
-
Breitkopf-Heinlein K, Meyer C, König C, Gaitantzi H, Addante A, Thomas M, Wiercinska E, Cai C, Li Q, Wan F, Hellerbrand C, Valous NA, Hahnel M, Ehlting C, Bode JG, Müller-Bohl S, Klingmüller U, Altenöder J, Ilkavets I, Goumans MJ, Hawinkels LJ, Lee SJ, Wieland M, Mogler C, Ebert MP, Herrera B, Augustin H, Sánchez A, Dooley S, and Ten Dijke P
- Subjects
- Acute Lung Injury genetics, Animals, Cell Proliferation drug effects, Cells, Cultured, Disease Models, Animal, Down-Regulation drug effects, Epithelial-Mesenchymal Transition drug effects, Growth Differentiation Factor 2 antagonists & inhibitors, Growth Differentiation Factor 2 genetics, Hepatectomy, Hepatocytes drug effects, Hepatocytes enzymology, Lipopolysaccharides pharmacology, Liver Cirrhosis genetics, Male, Mice, Mice, Inbred C57BL, Mice, Knockout, Acute Lung Injury physiopathology, Growth Differentiation Factor 2 metabolism, Growth Differentiation Factor 2 pharmacology, Hepatic Stellate Cells metabolism, Hepatocytes physiology, Liver Cirrhosis metabolism, Liver Regeneration drug effects
- Abstract
Objective: Bone morphogenetic protein (BMP)-9, a member of the transforming growth factor-β family of cytokines, is constitutively produced in the liver. Systemic levels act on many organs and tissues including bone and endothelium, but little is known about its hepatic functions in health and disease., Design: Levels of BMP-9 and its receptors were analysed in primary liver cells. Direct effects of BMP-9 on hepatic stellate cells (HSCs) and hepatocytes were studied in vitro, and the role of BMP-9 was examined in acute and chronic liver injury models in mice., Results: Quiescent and activated HSCs were identified as major BMP-9 producing liver cell type. BMP-9 stimulation of cultured hepatocytes inhibited proliferation, epithelial to mesenchymal transition and preserved expression of important metabolic enzymes such as cytochrome P450. Acute liver injury caused by partial hepatectomy or single injections of carbon tetrachloride (CCl
4 ) or lipopolysaccharide (LPS) into mice resulted in transient downregulation of hepatic BMP-9 mRNA expression. Correspondingly, LPS stimulation led to downregulation of BMP-9 expression in cultured HSCs. Application of BMP-9 after partial hepatectomy significantly enhanced liver damage and disturbed the proliferative response. Chronic liver damage in BMP-9-deficient mice or in mice adenovirally overexpressing the selective BMP-9 antagonist activin-like kinase 1-Fc resulted in reduced deposition of collagen and subsequent fibrosis., Conclusions: Constitutive expression of low levels of BMP-9 stabilises hepatocyte function in the healthy liver. Upon HSC activation, endogenous BMP-9 levels increase in vitro and in vivo and high levels of BMP-9 cause enhanced damage upon acute or chronic injury., (Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.)- Published
- 2017
- Full Text
- View/download PDF
3. Hepatic stellate cell-expressed endosialin balances fibrogenesis and hepatocyte proliferation during liver damage.
- Author
-
Mogler C, Wieland M, König C, Hu J, Runge A, Korn C, Besemfelder E, Breitkopf-Heinlein K, Komljenovic D, Dooley S, Schirmacher P, Longerich T, and Augustin HG
- Subjects
- Animals, Humans, Liver Cirrhosis chemically induced, Liver Regeneration, Mice, Mice, Knockout, Neoplasm Proteins deficiency, Neoplasm Proteins metabolism, Antigens, CD metabolism, Antigens, Neoplasm metabolism, Cell Proliferation, Hepatic Stellate Cells metabolism, Hepatocytes cytology, Liver Cirrhosis pathology
- Abstract
Liver fibrosis is a reversible wound-healing response to injury reflecting the critical balance between liver repair and scar formation. Chronic damage leads to progressive substitution of liver parenchyma by scar tissue and ultimately results in liver cirrhosis. Stromal cells (hepatic stellate cells [HSC] and endothelial cells) have been proposed to control the balance between liver fibrosis and regeneration. Here, we show that endosialin, a C-type lectin, expressed in the liver exclusively by HSC and portal fibroblasts, is upregulated in liver fibrosis in mouse and man. Chronic chemically induced liver damage resulted in reduced fibrosis and enhanced hepatocyte proliferation in endosialin-deficient (EN(KO)) mice. Correspondingly, acute-liver-damage-induced hepatocyte proliferation (partial hepatectomy) was increased in EN(KO) mice. A candidate-based screen of known regulators of hepatocyte proliferation identified insulin-like growth factor 2 (IGF2) as selectively endosialin-dependent hepatocyte mitogen. Collectively, the study establishes a critical role of HSC in the reciprocal regulation of fibrogenesis vs. hepatocyte proliferation and identifies endosialin as a therapeutic target in non-neoplastic settings., (© 2015 The Authors. Published under the terms of the CC BY 4.0 license.)
- Published
- 2015
- Full Text
- View/download PDF
4. Identification of RARRES1 as a core regulator in liver fibrosis.
- Author
-
Teufel A, Becker D, Weber SN, Dooley S, Breitkopf-Heinlein K, Maass T, Hochrath K, Krupp M, Marquardt JU, Kolb M, Korn B, Niehrs C, Zimmermann T, Godoy P, Galle PR, and Lammert F
- Subjects
- Animals, Blotting, Western, Cell Line, Tumor, Humans, In Vitro Techniques, Kidney metabolism, Liver pathology, Lung metabolism, Male, Mice, Rats, Reverse Transcriptase Polymerase Chain Reaction, Hepatic Stellate Cells metabolism, Liver metabolism, Liver Cirrhosis metabolism, Membrane Proteins metabolism
- Abstract
Genetic factors contribute to progression and modulation of hepatic fibrosis. High throughput genomics/transcriptomics approaches aiming at identifying key regulators of fibrosis development are tainted with the difficulty of separating essential biological "driver" from modifier genes. We applied a comparative transcriptomics approach and investigated fibrosis development in different organs to identify overlapping expression changes, since these genes may be part of core pathways in fibrosis development. Gene expression was analysed on publicly available microarray data from liver, lung and kidney fibrosis. RARRES1, AGER and S100A2 were differentially regulated in all fibrosis experiments. RARRES1 was extensively analysed by means of advanced bioinformatics analyses and functional studies. Microarray and Western Blot analysis of a standard liver fibrosis model (CCl(4)) demonstrated an early induction of RARRES1 mRNA and protein expression. In addition, quantitative RT-PCR in tissue samples from patients with advanced liver fibrosis showed higher expression as compared to non-fibrotic biopsies. Microarray analysis of RARRES1 overexpressing cells identified an enrichment of a major signature associated with fibrosis. Furthermore, RARRES1 expression increased during in vitro activation of hepatic stellate cells. To further verify the pro-fibrogenic role across organs, we demonstrated an increase in RARRES1 expression in a rat lung fibrosis model induced by adenoviral TGF-β1 induction. We have performed a comparative transcriptomics analysis in order to identify core pathways of liver fibrogenesis, confirmed a candidate gene and enlightened the up- and downstream mechanisms of its action leading to fibrosis across organs and species.
- Published
- 2012
- Full Text
- View/download PDF
5. Potential Roles of Bone Morphogenetic Protein (BMP)-9 in Human Liver Diseases.
- Author
-
Herrera, Blanca, Dooley, Steven, and Breitkopf-Heinlein, Katja
- Subjects
BONE morphogenetic proteins ,LIVER disease treatment ,TRANSFORMING growth factors ,EMBRYOLOGY ,BONE growth ,CELL differentiation - Abstract
Bone morphogenetic proteins (BMP-2 to BMP-15) belong to the Transforming Growth Factor (TGF)-ß superfamily and, besides their well-documented roles during embryogenesis and bone formation, some of them have recently been described to be involved in the pathogenesis of different organs, including the liver. The role of BMPs in liver damage responses including hepatocellular carcinoma (HCC) development has only begun to be addressed and strong evidence supports the concept of a pro-tumorigenic role of BMP signaling in HCC cells. BMP-9 (also termed Growth and Differentiation Factor (GDF)-2) represents the most recently discovered member of the BMP family. We have previously demonstrated that in HCC patient samples BMP-9 expression was positively associated with the tumor seize ("T stage") and that it enhanced cell migration and induced epithelial to mesenchymal transition (EMT) in HCC cells in vitro. In another study we recently found that BMP-9 promotes growth in HCC cells, but not in non-transformed hepatocytes. Published as well as unpublished results obtained with primary hepatocytes support the concept of a dual function of BMP-9 in the liver: while in primary, non-malignant cells BMP-9 stabilizes the epithelial phenotype and inhibits proliferation, in HCC cells it induces cell growth and the acquisition of a migratory phenotype. In this review article we summarize current knowledge about BMPs in liver diseases, with special focus on the role of BMP-9 in HCC development and progression, that may provide new clues for a better understanding of the contribution of BMP-signaling to chronic liver diseases. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.