1. Posttranslational Modification of Heme b in a Bacterial Peroxidase: The Role of Heme to Protein Ester Bonds in Ligand Binding and Catalysis.
- Author
-
Nicolussi A, Auer M, Weissensteiner J, Schütz G, Katz S, Maresch D, Hofbauer S, Bellei M, Battistuzzi G, Furtmüller PG, and Obinger C
- Subjects
- Bacterial Proteins chemistry, Bacterial Proteins genetics, Catalysis, Heme chemistry, Heme genetics, Ligands, Peroxidase chemistry, Peroxidase genetics, Bacterial Proteins metabolism, Cyanobacteria enzymology, Heme metabolism, Peroxidase metabolism, Protein Processing, Post-Translational physiology
- Abstract
The existence of covalent heme to protein bonds is the most striking structural feature of mammalian peroxidases, including myeloperoxidase and lactoperoxidase (LPO). These autocatalytic posttranslational modifications (PTMs) were shown to strongly influence the biophysical and biochemical properties of these oxidoreductases. Recently, we reported the occurrence of stable LPO-like counterparts with two heme to protein ester linkages in bacteria. This study focuses on the model wild-type peroxidase from the cyanobacterium Lyngbya sp. PCC 8106 (LspPOX) and the mutants D109A, E238A, and D109A/E238A that could be recombinantly produced as apoproteins in Escherichia coli, fully reconstituted to the respective heme b proteins, and posttranslationally modified by hydrogen peroxide. This for the first time allows not only a direct comparison of the catalytic properties of the heme b and PTM forms but also a study of the impact of D109 and E238 on PTM and catalysis, including Compound I formation and the two-electron reduction of Compound I by bromide, iodide, and thiocyanate. It is demonstrated that both heme to protein ester bonds can form independently and that elimination of E238, in contrast to exchange of D109, does not cause significant structural rearrangements or changes in the catalytic properties neither in heme b nor in the PTM form. The obtained findings are discussed with respect to published structural and functional data of human peroxidases.
- Published
- 2017
- Full Text
- View/download PDF