Background AML1/RUNX1 is the most frequently mutated gene in leukaemia and is central to the normal biology of hematopoietic stem and progenitor cells. However, the role of different AML1 isoforms within these primitive compartments is unclear. Here we investigate whether altering relative expression of AML1 isoforms impacts the balance between cell self-renewal and differentiation in vitro and in vivo. Methods and Findings The human AML1a isoform encodes a truncated molecule with DNA-binding but no transactivation capacity. We used a retrovirus-based approach to transduce AML1a into primitive haematopoietic cells isolated from the mouse. We observed that enforced AML1a expression increased the competitive engraftment potential of murine long-term reconstituting stem cells with the proportion of AML1a-expressing cells increasing over time in both primary and secondary recipients. Furthermore, AML1a expression dramatically increased primitive and committed progenitor activity in engrafted animals as assessed by long-term culture, cobblestone formation, and colony assays. In contrast, expression of the full-length isoform AML1b abrogated engraftment potential. In vitro, AML1b promoted differentiation while AML1a promoted proliferation of progenitors capable of short-term lymphomyeloid engraftment. Consistent with these findings, the relative abundance of AML1a was highest in the primitive stem/progenitor compartment of human cord blood, and forced expression of AML1a in these cells enhanced maintenance of primitive potential both in vitro and in vivo. Conclusions These data demonstrate that the “a” isoform of AML1 has the capacity to potentiate stem and progenitor cell engraftment, both of which are required for successful clinical transplantation. This activity is consistent with its expression pattern in both normal and leukaemic cells. Manipulating the balance of AML1 isoform expression may offer novel therapeutic strategies, exploitable in the contexts of leukaemia and also in cord blood transplantation in adults, in whom stem and progenitor cell numbers are often limiting., The truncated "a" isoform of AML1 is shown to have the capacity to potentiate stem and progenitor cell engraftment, both of which are required for successful clinical transplantation., Editors' Summary Background. Blood contains red blood cells (which carry oxygen round the body), platelets (which help the blood to clot), and white blood cells (which fight off infections). All these cells, which are regularly replaced, are derived from hematopoietic stem cells, blood-forming cells present in the bone marrow. Like all stem cells, hematopoietic stem cells self-renew (reproduce themselves) and produce committed progenitor cells, which develop into mature blood cells in a process called hematopoiesis. Many proteins control hematopoiesis, some of which are called transcription factors; these factors bind to DNA through their DNA-binding domain and then control the expression of genes (that is, how DNA is turned into proteins) through particular parts of the protein (their transcription regulatory domains). An important hematopoietic transcription factor is AML1—a protein first identified because of its involvement in acute myelogenous leukemia (AML, a form of blood cancer). Mutations (changes) in the AML1 gene are now known to be present in other types of leukemia, which are often characterized by overproliferation of immature blood cells. Why Was This Study Done? Because of AML1′s crucial role in hematopoiesis, knowing more about which genes it regulates and how its activity is regulated could provide clues to treating leukemia and to improving hematopoietic cell transplantation. Many cancer treatments destroy hematopoietic stem cells, leaving patients vulnerable to infection. Transplants of bone marrow or cord blood (the cord that links mother and baby during pregnancy contains peripheral blood stem cells) can replace the missing cells, but cord blood in particular often contains insufficient stem cells for successful transplantation. It would be useful, therefore, to expand the stem cell content of these tissues before transplantation. In this study, the researchers investigated the effect of AML1 on self-renewal and differentiation of hematopoietic stem and progenitor cells in the laboratory (in vitro) and in animals (in vivo). In particular, they have asked how two isoforms (closely related versions) of AML1 affect the ability of these cells to grow and differentiate (engraft) in mice after transplantation. What Did the Researchers Do and Find? The researchers artificially expressed AML1a and AML1b (both isoforms contain a DNA binding domain, but only AML1b has transcription regulatory domains) in mouse hematopoietic stem and progenitor cells and then tested the cells' ability to engraft in mice. AML1a-expressing cells engrafted better than unaltered cells and outgrew unaltered cells when transplanted as a mixture. AML1b-expressing cells, however, did not engraft. In vitro, AML1a-expressing cells grew more than AML1b-expressing cells, whereas differentiation was promoted in AML1b-expressing cells. To investigate whether the isoforms have the same effects in human cells, the researchers measured the amount of AML1a and AML1b mRNA (the template for protein production) made by progenitor cells in human cord blood. Although AML1b (together with AML1c, an isoform with similar characteristics) mRNA predominated in all the progenitor cell types, the relative abundance of AML1a was greatest in the stem and progenitor cells. Furthermore, forced expression of AML1a in these cells improved their ability to divide in vitro and to engraft in mice. What Do These Findings Mean? These findings indicate that AML1a expression increases the self-renewal capacity of hematopoietic stem and progenitor cells and consequently improves their ability to engraft in mice, whereas AML1b expression encourages the differentiation of these cell types. These activities are consistent with the expression patterns of the two isoforms in normal hematopoietic cells and in leukemic cells—the mutated AML made by many leukemic cells resembles AML1a. Because the AML1 isoforms were expressed at higher than normal levels in these experiments, the physiological relevance of these findings needs to be confirmed by showing that normal levels of AML1a and AML1b produce similar results. Nevertheless, these results suggest that manipulating the balance of AML1 isoforms made by hematopoietic cells might be useful clinically. In leukemia, a shift toward AML1b expression might slow the proliferation of leukemic cells and encourage their differentiation. Conversely, in cord blood transplantation, a shift toward AML1a expression might improve patient outcomes by expanding the stem and progenitor cell populations. Additional Information. Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0040172. Wikipedia has pages on hematopoiesis and hematopoietic stem cells (note: Wikipedia is a free online encyclopedia that anyone can edit; available in several languages) The US National Cancer Institute has a fact sheet on bone marrow and peripheral blood stem cell transplantation (in English and Spanish) and information for patients and professionals on leukemia (in English) The American Society of Hematology provides patient information about blood diseases, including information on bone marrow and stem cell transplantation