1. Enthalpy of hydrogen bond formation in a protein-ligand binding reaction.
- Author
-
Connelly PR, Aldape RA, Bruzzese FJ, Chambers SP, Fitzgibbon MJ, Fleming MA, Itoh S, Livingston DJ, Navia MA, and Thomson JA
- Subjects
- Carrier Proteins genetics, Deuterium Oxide, Heat-Shock Proteins genetics, Humans, Hydrogen Bonding, Ligands, Models, Molecular, Molecular Structure, Mutagenesis, Site-Directed, Polyenes metabolism, Protein Binding, Protein Conformation, Recombinant Proteins chemistry, Recombinant Proteins genetics, Recombinant Proteins metabolism, Sirolimus, Solutions, Tacrolimus metabolism, Tacrolimus Binding Proteins, Thermodynamics, Water, Carrier Proteins chemistry, Carrier Proteins metabolism, Heat-Shock Proteins chemistry, Heat-Shock Proteins metabolism
- Abstract
Parallel measurements of the thermodynamics (free-energy, enthalpy, entropy and heat-capacity changes) of ligand binding to FK506 binding protein (FKBP-12) in H2O and D2O have been performed in an effort to probe the energetic contributions of single protein-ligand hydrogen bonds formed in the binding reactions. Changing tyrosine-82 to phenylalanine in FKBP-12 abolishes protein-ligand hydrogen bond interactions in the FKBP-12 complexes with tacrolimus or rapamycin and leads to a large apparent enthalpic stabilization of binding in both H2O and D2O. High-resolution crystallographic analysis reveals that two water molecules bound to the tyrosine-82 hydroxyl group in unliganded FKBP-12 are displaced upon formation of the protein-ligand complexes. A thermodynamic analysis is presented that suggests that the removal of polar atoms from water contributes a highly unfavorable enthalpy change to the formation of C=O...HO hydrogen bonds as they occur in the processes of protein folding and ligand binding. Despite the less favorable enthalpy change, the entropic advantage of displacing two water molecules upon binding leads to a slightly more favorable free-energy change of binding in the reactions with wild-type FKBP-12.
- Published
- 1994
- Full Text
- View/download PDF