Bertran Auvert, Elliot Marseille, James G. Kahn, Schmaus, Annie, Institute for Health Policy Studies, University of California [San Francisco] (UC San Francisco), University of California (UC)-University of California (UC), Health Strategies International, Hôpital Ambroise Paré [AP-HP], Santé publique et épidémiologie des déterminants professionnels et sociaux de la santé, Epidémiologie, sciences sociales, santé publique (IFR 69), Université Paris 1 Panthéon-Sorbonne (UP1)-Université Paris-Sud - Paris 11 (UP11)-École des hautes études en sciences sociales (EHESS)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Paris 1 Panthéon-Sorbonne (UP1)-Université Paris-Sud - Paris 11 (UP11)-École des hautes études en sciences sociales (EHESS)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut National de la Santé et de la Recherche Médicale (INSERM), University of California [San Francisco] (UCSF), University of California-University of California, Université Paris 1 Panthéon-Sorbonne (UP1)-Université Paris-Sud - Paris 11 (UP11)-École des hautes études en sciences sociales (EHESS)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Paris 1 Panthéon-Sorbonne (UP1)-Université Paris-Sud - Paris 11 (UP11)-École des hautes études en sciences sociales (EHESS)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), and Freedberg, KA
Background Consistent with observational studies, a randomized controlled intervention trial of adult male circumcision (MC) conducted in the general population in Orange Farm (OF) (Gauteng Province, South Africa) demonstrated a protective effect against HIV acquisition of 60%. The objective of this study is to present the first cost-effectiveness analysis of the use of MC as an intervention to reduce the spread of HIV in sub-Saharan Africa. Methods and Findings Cost-effectiveness was modeled for 1,000 MCs done within a general adult male population. Intervention costs included performing MC and treatment of adverse events. HIV prevalence was estimated from published estimates and incidence among susceptible subjects calculated assuming a steady-state epidemic. Effectiveness was defined as the number of HIV infections averted (HIA), which was estimated by dynamically projecting over 20 years the reduction in HIV incidence observed in the OF trial, including secondary transmission to women. Net savings were calculated with adjustment for the averted lifetime duration cost of HIV treatment. Sensitivity analyses examined the effects of input uncertainty and program coverage. All results were discounted to the present at 3% per year. For Gauteng Province, assuming full coverage of the MC intervention, with a 2005 adult male prevalence of 25.6%, 1,000 circumcisions would avert an estimated 308 (80% CI 189–428) infections over 20 years. The cost is $181 (80% CI $117–$306) per HIA, and net savings are $2.4 million (80% CI $1.3 million to $3.6 million). Cost-effectiveness is sensitive to the costs of MC and of averted HIV treatment, the protective effect of MC, and HIV prevalence. With an HIV prevalence of 8.4%, the cost per HIA is $551 (80% CI $344–$1,071) and net savings are $753,000 (80% CI $0.3 million to $1.2 million). Cost-effectiveness improves by less than 10% when MC intervention coverage is 50% of full coverage. Conclusions In settings in sub-Saharan Africa with high or moderate HIV prevalence among the general population, adult MC is likely to be a cost-effective HIV prevention strategy, even when it has a low coverage. MC generates large net savings after adjustment for averted HIV medical costs., Based on data from a trial of adult male circumcision to reduce the spread of HIV, a modeling study shows this intervention to be a cost-effective strategy., Editors' Summary Background. Preventing the spread of HIV is an enormous challenge of great importance worldwide. In 2005, HIV/AIDS was responsible for around 3 million deaths, of which approximately one-third were in sub-Saharan Africa. HIV is spread from one person to another in three main ways: through unprotected sex; through contaminated blood or blood products (for example when shared needles are used); and from mother to child (during pregnancy, labor, and breastfeeding). Many strategies for preventing HIV focus on reducing risky behaviors. For example, condoms used correctly are effective at preventing HIV infection, and many countries now aim to promote condom use, together with other approaches that will reduce the risk of getting HIV. However, it is unlikely that strategies involving large-scale changes in behavior will ever be completely effective. Recently, much attention has focused on the possibility that circumcision might provide men with some protection against getting HIV. The results of a trial carried out in South Africa, the ANRS 1265 trial (published in PLoS Medicine in October 2005) seem to support this theory, and additional trials are being carried out in Kenya and Uganda. The results from these further trials will help determine whether, and to what extent, the effect of circumcision seen in the South African trial is true more generally. Why Was This Study Done? The investigators who had carried out the South African circumcision trial wanted to find out how the economic aspects of this prevention strategy would compare with other strategies for prevention of HIV. Specifically, they wanted to know how much male circumcision would cost overall, per HIV infection prevented, as compared with the cost of other strategies. They also wanted to understand whether circumcision would be “cost-saving.” In other words, would the cost of performing the operation (together with the cost of treating any adverse effects suffered by the men who were circumcised) be offset by the costs of treatment for HIV infections that the intervention prevented? Getting this information is crucial before health policy makers can decide what strategies for preventing HIV are most appropriate for their country. What Did the Researchers Do and Find? In this study, the researchers carried out a set of mathematical calculations, using the results from the ANRS 1265 trial, together with some other data and background assumptions. Their model was based on a hypothetical group of 1,000 men, all of whom would be circumcised. The researchers calculated that in such a hypothetical group, the cost of providing male circumcision, per HIV infection prevented, would be around $180. Overall, this procedure seemed to be cost-saving when the cost of HIV treatment was also factored in; around $2.4 million would be saved for the 1,000 men circumcised. What Do These Findings Mean? These results suggest that, assuming the results of the South African trial are generally true, male circumcision would reduce the cost of health care in South Africa, mainly through savings on the cost of HIV treatment. The overall cost of male circumcision, per HIV infection prevented, is reasonable as compared to the costs of other strategies for prevention of HIV. There would also be implications for HIV prevention programs in other African countries. However, these estimates are based on the data from one trial only. The World Health Organization does not currently recommend the promotion of male circumcision for prevention of HIV. Meanwhile, proven strategies for preventing HIV exist, and more information is available from the links below. Additional Information. Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0030517. The World Health Organization has an HIV/AIDS program site providing comprehensive information on the HIV/AIDS epidemic worldwide General information and resources from the US Centers for Disease Control and Prevention on preventing HIV/AIDS Fact sheet from the Joint United Nations Programme on HIV/AIDS about male circumcision and HIV Results of the ANRS 1265 Trial evaluating male circumcision for HIV prevention were published in PLoS Medicine in October 2005; two related “Perspective” articles were also published in the same issue by Nandi Siegfried and Peter Cleaton-Jones