1. Influence of Foramen Magnum Boundary Condition on Intracranial Dynamic Response Under Forehead Impact Using Human Body Finite Element Model.
- Author
-
Ren, Lihai, Wang, Dangdang, Jiang, Chengyue, and Hu, Yuanzhi
- Subjects
HUMAN body ,HEAD injuries ,BRAIN injuries ,RELATIVE motion - Abstract
The biofidelity is an essential requirement of the application of human head finite element (FE) models to investigate head injuries under mechanical loadings. However, the influence of the foramen magnum boundary condition (FMBC) on intracranial dynamic responses under head impacts has yet to be fully identified until now. This study aimed to investigate the effect of different modeling methods of the FMBC on intracranial dynamic responses induced by forehead impact, especially the axonal injury associated dynamic responses. The total human model for safety (THUMS) was applied in this study. Two FE models with different FMBC modeling methods were developed from the THUMS model. Then, three forehead impact FE models were established respectively, including the original THUMS model. Further FE simulations were conducted to investigate the influence of FMBC modeling methods on intracranial dynamic responses. Though, difference between the intracranial dynamic responses (relative skull-brain motion and strain responses) at areas far from the foramen magnum were slightly, the corresponding difference at the brain stem area were distinctly. Meanwhile, the predicted axonal injury risk of the brain stem white matter was varying among each other. Different modeling methods of FMBC could result in different intracranial dynamic responses of the brain stem, and affect the axonal injury prediction. Therefore, the modeling of the FMBC should be further evaluated for the study of brain stem injury using human head FE models. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF