1. Attenuation of canonical NF-κB signaling maintains function and stability of human Treg.
- Author
-
Ziegler LS, Gerner MC, Schmidt RLJ, Trapin D, Steinberger P, Pickl WF, Sillaber C, Egger G, Schwarzinger I, and Schmetterer KG
- Subjects
- Active Transport, Cell Nucleus drug effects, Active Transport, Cell Nucleus immunology, Cell Nucleus drug effects, Cell Nucleus immunology, Cell Nucleus metabolism, Forkhead Transcription Factors genetics, Gene Expression Regulation, Humans, Interleukin-10 genetics, Interleukin-10 immunology, Lymphocyte Activation, NF-kappa B p50 Subunit deficiency, NF-kappa B p50 Subunit genetics, Phosphorylation drug effects, Primary Cell Culture, Repressor Proteins genetics, Repressor Proteins immunology, Signal Transduction, Sirolimus pharmacology, T-Lymphocytes, Regulatory cytology, T-Lymphocytes, Regulatory drug effects, TOR Serine-Threonine Kinases antagonists & inhibitors, TOR Serine-Threonine Kinases genetics, Thiazoles pharmacology, Transcription Factor RelA antagonists & inhibitors, Transcription Factor RelA genetics, Forkhead Transcription Factors immunology, Haploinsufficiency immunology, NF-kappa B p50 Subunit immunology, T-Lymphocytes, Regulatory immunology, TOR Serine-Threonine Kinases immunology, Transcription Factor RelA immunology
- Abstract
Nuclear factor 'κ-light-chain-enhancer' of activated B cells (NF-κB) signaling is a signaling pathway used by most immune cells to promote immunostimulatory functions. Recent studies have indicated that regulatory T cells (Treg) differentially integrate TCR-derived signals, thereby maintaining their suppressive features. However, the role of NF-κB signaling in the activation of human peripheral blood (PB) Treg has not been fully elucidated so far. We show that the activity of the master transcription factor forkhead box protein 3 (FOXP3) attenuates p65 phosphorylation and nuclear translocation of the NF-κB proteins p50, p65, and c-Rel following activation in human Treg. Using pharmacological and genetic inhibition of canonical NF-κB signaling in FOXP3-transgenic T cells and PB Treg from healthy donors as well as Treg from a patient with a primary NFKB1 haploinsufficiency, we validate that Treg activation and suppressive capacity is independent of NF-κB signaling. Additionally, repression of residual NF-κB signaling in Treg further enhances interleukin-10 (IL-10) production. Blockade of NF-κB signaling can be exploited for the generation of in vitro induced Treg (iTreg) with enhanced suppressive capacity and functional stability. In this respect, dual blockade of mammalian target of rapamycin (mTOR) and NF-κB signaling was accompanied by enhanced expression of the transcription factors FOXP1 and FOXP3 and demethylation of the Treg-specific demethylated region compared to iTreg generated under mTOR blockade alone. Thus, we provide first insights into the role of NF-κB signaling in human Treg. These findings could lead to strategies for the selective manipulation of Treg and the generation of improved iTreg for cellular therapy., (© 2020 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.)
- Published
- 2021
- Full Text
- View/download PDF