1. TALEN-Mediated Gene Editing of HBG in Human Hematopoietic Stem Cells Leads to Therapeutic Fetal Hemoglobin Induction
- Author
-
Irwin D. Bernstein, Julia G. Yang, Andrew M. Scharenberg, Christopher T. Lux, Olivier Negre, Sowmya Pattabhi, David A. Flowers, Kyle Jacoby, Mason P. Berger, Hans-Peter Kiem, Calvin Lee, Cynthia Nourigat, Olivier Humbert, and David J. Rawlings
- Subjects
0301 basic medicine ,HBG ,thalassemia ,HBG1 ,Hereditary persistence of fetal hemoglobin ,lcsh:QH426-470 ,Biology ,HSC ,Article ,03 medical and health sciences ,0302 clinical medicine ,TALEN ,Fetal hemoglobin ,Genetics ,medicine ,hemoglobinopathy ,lcsh:QH573-671 ,Molecular Biology ,HPFH ,gene editing ,lcsh:Cytology ,Transfection ,hemoglobin ,medicine.disease ,Molecular biology ,3. Good health ,SCD ,Transplantation ,Haematopoiesis ,lcsh:Genetics ,030104 developmental biology ,030220 oncology & carcinogenesis ,Humanized mouse ,Molecular Medicine ,sickle cell disease ,Stem cell - Abstract
Elements within the γ-hemoglobin promoters (HBG1 and HBG2) function to bind transcription complexes that mediate repression of fetal hemoglobin expression. Sickle cell disease (SCD) subjects with a 13-bp deletion in the HBG1 promoter exhibit a clinically favorable hereditary persistence of fetal hemoglobin (HPFH) phenotype. We developed TALENs targeting the homologous HBG promoters to de-repress fetal hemoglobin. Transfection of human CD34+ cells with TALEN mRNA resulted in indel generation in HBG1 (43%) and HBG2 (74%) including the 13-bp HPFH deletion (∼6%). Erythroid differentiation of edited cells revealed a 4.6-fold increase in γ-hemoglobin expression as detected by HPLC. Assessment of TALEN-edited CD34+ cells in vivo in a humanized mouse model demonstrated sustained presence of indels in hematopoietic cells up to 24 weeks. Indel rates remained unchanged following secondary transplantation consistent with editing of long-term repopulating stem cells (LT-HSCs). Human γ-hemoglobin expressing F cells were detected by flow cytometry approximately 50% more frequently in edited animals compared to mock. Together, these findings demonstrate that TALEN-mediated indel generation in the γ-hemoglobin promoter leads to high levels of fetal hemoglobin expression in vitro and in vivo, suggesting that this approach can provide therapeutic benefit in patients with SCD or β-thalassemia., Graphical Abstract
- Published
- 2019