1. The Metabolomic Signature of Opa1 Deficiency in Rat Primary Cortical Neurons Shows Aspartate/Glutamate Depletion and Phospholipids Remodeling
- Author
-
Pascale Belenguer, Juan Manuel Chao de la Barca, Guy Lenaers, Guillaume Tcherkez, Gilles Simard, Laetitia Arnauné-Pelloquin, Pascal Reynier, Olga Iuliano, Cinzia Bocca, Macarena S. Arrázola, Physiopathologie Cardiovasculaire et Mitochondriale (MITOVASC), Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université d'Angers (UA), Biologie Neurovasculaire et Mitochondriale Intégrée (BNMI), Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université d'Angers (UA), Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération (LBCMCP), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre de Biologie Intégrative (CBI), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut de Biologie des Plantes (IBP), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), LENAERS, Guy, Université d'Angers (UA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), and MitoVasc - Physiopathologie Cardiovasculaire et Mitochondriale (MITOVASC)
- Subjects
0301 basic medicine ,endocrine system ,[SDV]Life Sciences [q-bio] ,Primary Cell Culture ,Phospholipid ,Down-Regulation ,Glutamic Acid ,lcsh:Medicine ,Article ,GTP Phosphohydrolases ,03 medical and health sciences ,chemistry.chemical_compound ,0302 clinical medicine ,Metabolomics ,Downregulation and upregulation ,Optic Atrophy, Autosomal Dominant ,Animals ,Humans ,RNA, Small Interfering ,Threonine ,lcsh:Science ,Cells, Cultured ,Phospholipids ,ComputingMilieux_MISCELLANEOUS ,Cerebral Cortex ,Neurons ,Aspartic Acid ,Multidisciplinary ,Chemistry ,lcsh:R ,Glutamate receptor ,RNA ,Embryo, Mammalian ,eye diseases ,Rats ,Cell biology ,[SDV] Life Sciences [q-bio] ,Disease Models, Animal ,030104 developmental biology ,mitochondrial fusion ,Female ,lcsh:Q ,Sphingomyelin ,030217 neurology & neurosurgery - Abstract
Pathogenic variants of OPA1, which encodes a dynamin GTPase involved in mitochondrial fusion, are responsible for a spectrum of neurological disorders sharing optic nerve atrophy and visual impairment. To gain insight on OPA1 neuronal specificity, we performed targeted metabolomics on rat cortical neurons with OPA1 expression inhibited by RNA interference. Of the 103 metabolites accurately measured, univariate analysis including the Benjamini-Hochberg correction revealed 6 significantly different metabolites in OPA1 down-regulated neurons, with aspartate being the most significant (p 2cum = 0.65) and a low risk of over-fitting (permQ2 = −0.16, CV-ANOVA p-value 0.036). Amongst the 46 metabolites contributing the most to the metabolic signature were aspartate, glutamate and threonine, which all decreased in OPA1 down-regulated neurons, and lysine, 4 sphingomyelins, 4 lysophosphatidylcholines and 32 phosphatidylcholines which were increased. The phospholipid signature may reflect intracellular membrane remodeling due to loss of mitochondrial fusion and/or lipid droplet accumulation. Aspartate and glutamate deficiency, also found in the plasma of OPA1 patients, is likely the consequence of respiratory chain deficiency, whereas the glutamate decrease could contribute to the synaptic dysfunction that we previously identified in this model.
- Published
- 2019
- Full Text
- View/download PDF