1. The generalized version of Jun's cubic sets in semigroups.
- Author
-
Khan, Madad, Jun, Young Bae, Gulistan, Muhammad, and Yaqoob, Naveed
- Subjects
- *
SET theory , *SEMIGROUPS (Algebra) , *GROUP theory , *GENERALIZATION , *MATHEMATICAL formulas , *PRIME ideals - Abstract
In this paper, we define the concept of generalized cubic subsemigroups (ideals) of a semigroup and investigate some of its related properties. In particular, we introduce the concept of
$(\in _{(\widetilde{\gamma }_{1},\gamma _{2}) },\in _{(\widetilde{\gamma}_{1},\gamma _{2}) }\vee q_{(\widetilde{\delta }_{1},\delta _{2})})$ -cubic ideal,$(\in _{( \widetilde{\gamma }_{1},\gamma _{2}) },\in _{(\widetilde{\gamma }_{1},\gamma _{2}) }\vee q_{(\widetilde{\delta }_{1},\delta _{2}) }) $-cubic quasi-ideal,$(\in _{( \widetilde{\gamma }_{1},\gamma _{2}) },\in _{(\widetilde{\gamma }_{1},\gamma _{2}) }\vee q_{( \widetilde{\delta }_{1},\delta _{2})}) $-cubic bi-ideal and$(\in _{( \widetilde{\gamma }_{1},\gamma _{2})},\in _{(\widetilde{\gamma } _{1},\gamma _{2})}\vee q_{(\widetilde{\delta }_{1},\delta _{2})}) $-cubic prime/semiprime ideal of a semigroup. [ABSTRACT FROM AUTHOR]- Published
- 2015
- Full Text
- View/download PDF