1. Numerical simulation of different pollutant control measures around an old landfill contaminated site: A field scale study.
- Author
-
Xie H, Chen Y, Zhu X, Bouazza A, and Yan H
- Subjects
- Environmental Monitoring methods, Environmental Pollution, Waste Disposal Facilities, Environmental Pollutants, Groundwater, Water Pollutants, Chemical analysis, Refuse Disposal
- Abstract
The remediation of contaminated soils is a great challenge for global environmental sciences and engineering. The landfill was a kind of infrastructure to deal with waste from different sources while it would also cause the threat to groundwater. Cut-off walls and pumping wells were usually applied in the landfill to prevent the spread of pollutants to wider areas. However, the combination of using both of methods was rarely analyzed, especially using field data for calibrating and fitting groundwater flow and pollutant transport. 7 monitoring wells were arranged in the study area to survey the subsurface seepage. The pollution monitoring was carried out for a period of 50 days, covering 31 types of inorganic and organic pollutants. The concentration of 2,4,6-trichlorophenol (TCP) was 556.7 times greater than the standard concentration. A coupled numerical model of groundwater flow and pollutant transport was developed to assess the effectiveness of various control methods. Three options were tested, including the implementation of a single cut-off wall as well as a combination of a cut-off wall and a pumping well, for preventing the discharge of pollutants from landfills. The combination of a cut-off wall and a pumping well is the best strategy for removal of TCP. The combination approaches lead to a reduction of pollution plumes by a factor of 11 compared to the case without pollution control measures. The research findings may provide a basis and reference for the application of cutoff walls and pumping well in landfill sites or contaminated groundwater., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier Ltd. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF