1. Synthesis and properties of crosslinked recombinant pro-resilin.
- Author
-
Elvin, Christopher M., Carr, Andrew G., Huson, Mickey G., Maxwell, Jane M., Pearson, Roger D., Vuocolo, Tony, Liyou, Nancy E., Wong, Darren C. C., Merritt, David J., and Dixon, Nicholas E.
- Subjects
- *
RECOMBINANT proteins , *RESILIN , *ELASTIN , *ANIMAL fibers , *EXTRACELLULAR matrix proteins , *GLYCOPROTEINS , *INSECTS - Abstract
Resilin is a member of a family of elastic proteins that includes elastin, as well as gluten, gliadin, abductin and spider silks. Resilin is found in specialized regions of the cuticle of most insects, providing low stiffness, high strain and efficient energy storage; it is best known for its roles in insect flight and the remarkable jumping ability of fleas and spittle bugs. Previously, the Drosophila melanogaster CG15920 gene was tentatively identified as one encoding a resilin-like protein (pro-resilin). Here we report the cloning and expression of the first exon of the Drosophila CG15920 gene as a soluble protein in Escherichia coli. We show that this recombinant protein can be cast into a rubber-like biomaterial by rapid photochemical crosslinking. This observation validates the role of the putative elastic repeat motif in resilin function. The resilience (recovery after deformation) of crosslinked recombinant resilin was found to exceed that of unfilled synthetic polybutadiene, a high resilience rubber. We believe that our work will greatly facilitate structural investigations into the functional properties of resilin and shed light on more general aspects of the structure of elastomeric proteins. In addition, the ability to rapidly cast samples of this biomaterial may enable its use in situ for both industrial and biomedical applications. [ABSTRACT FROM AUTHOR]
- Published
- 2005
- Full Text
- View/download PDF