1. Control of aversion by glycine-gated GluN1/GluN3A NMDA receptors in the adult medial habenula.
- Author
-
Otsu Y, Darcq E, Pietrajtis K, Mátyás F, Schwartz E, Bessaih T, Abi Gerges S, Rousseau CV, Grand T, Dieudonné S, Paoletti P, Acsády L, Agulhon C, Kieffer BL, and Diana MA
- Subjects
- Animals, Calcium metabolism, Cell Line, Conditioning, Psychological, Cues, Glycine pharmacology, Humans, Mice, Mice, Knockout, Neuroglia metabolism, Neurons metabolism, Patch-Clamp Techniques, Behavior, Animal, Emotions, Glycine metabolism, Habenula metabolism, Nerve Tissue Proteins metabolism, Receptors, N-Methyl-D-Aspartate metabolism
- Abstract
The unconventional N -methyl-d-aspartate (NMDA) receptor subunits GluN3A and GluN3B can, when associated with the other glycine-binding subunit GluN1, generate excitatory conductances purely activated by glycine. However, functional GluN1/GluN3 receptors have not been identified in native adult tissues. We discovered that GluN1/GluN3A receptors are operational in neurons of the mouse adult medial habenula (MHb), an epithalamic area controlling aversive physiological states. In the absence of glycinergic neuronal specializations in the MHb, glial cells tuned neuronal activity via GluN1/GluN3A receptors. Reducing GluN1/GluN3A receptor levels in the MHb prevented place-aversion conditioning. Our study extends the physiological and behavioral implications of glycine by demonstrating its control of negatively valued emotional associations via excitatory glycinergic NMDA receptors., (Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.)
- Published
- 2019
- Full Text
- View/download PDF