1. Carbohydrate depletion has profound effects on the muscle amino acid and glucose metabolism during hyperinsulinaemia.
- Author
-
Ebeling P, Tuominen JA, Laipio ML, Virtanen MA, Koivisto E, and Koivisto VA
- Subjects
- Adult, Alanine blood, Alanine metabolism, Amino Acids blood, Amino Acids, Branched-Chain blood, Amino Acids, Branched-Chain metabolism, Blood Glucose metabolism, Dietary Carbohydrates administration & dosage, Exercise physiology, Fatty Acids, Nonesterified blood, Humans, Insulin administration & dosage, Lactic Acid blood, Male, Amino Acids metabolism, Carbohydrates deficiency, Glucose metabolism, Hyperinsulinism metabolism, Muscle, Skeletal metabolism
- Abstract
Aim: We investigated the effect of carbohydrate availability and euglycaemic hyperinsulinaemia on intramuscular and plasma amino acids in 14 healthy men (age 26.5 +/- 0.9 years, b.m.i. 22.9 +/- 0.5 kg/m2)., Methods: Insulin was infused (1.5 mU/kg/min) for 240 min both after a carbohydrate depleting exercise and after carbohydrate loading. Muscle samples were taken before and after hyperinsulinaemia. Plasma and intramuscular amino acid concentrations were measured., Results: Insulin-mediated glucose disposal was similar after carbohydrate depletion (65.2 +/- 1.9 micromol/kg/min) and loading (66.9 +/- 2.8 micromol/kg/min). Carbohydrate depletion was associated with decreased alanine and increased branched chain amino acid (BCAA) concentrations in muscle and plasma. Blood lactate was lower after carbohydrate depletion (477 +/- 25 micromol/l) than loading (850 +/- 76 micromol/l, p < 0.001). In carbohydrate depletion, hyperinsulinaemia resulted in a greater increase in intramuscular (from 927 +/- 48 nmol/g muscle to 2029 +/- 104 nmol/g muscle, p < 0.001), than plasma (from 197 +/- 6.7 micromol/l to 267 +/- 11 micromol/l, p < 0.001) alanine. After carbohydrate loading muscle alanine did not rise significantly (from 1546 +/- 112 nmol/g muscle to 1781 +/- 71 nmol/g muscle) whereas plasma alanine decreased (from 339 +/- 26 micromol/l to 272 +/- 13 micromol/l, p < 0.05)., Conclusions: (1) Carbohydrate availability has profound effects on the interrelationship between glucose and amino acid metabolism and on the form of storage for glucose-derived carbons. (2) For most amino acids changes in plasma levels of amino acids are not related to changes in concentrations of intramuscular amino acids during hyperinsulinaemia.
- Published
- 2001
- Full Text
- View/download PDF