1. Optimization Model-Based Robust Method and Performance Evaluation of GNSS/INS Integrated Navigation for Urban Scenes.
- Author
-
Chai, Dashuai, Song, Shijie, Wang, Kunlin, Bi, Jingxue, Zhang, Yunlong, Ning, Yipeng, and Yan, Ruijie
- Subjects
GLOBAL Positioning System ,INERTIAL navigation systems ,ROBUST optimization - Abstract
The robust and high-precision estimation of position and attitude information using a combined global navigation satellite system/inertial navigation system (GNSS/INS) model is essential to a wide range of applications in intelligent driving and smart transportation. GNSS systems are susceptible to inaccuracies and signal interruptions in occluded environments, which lead to unreliable parameter estimations in GNSS/INS based on filter models. To address this issue, in this paper, a GNSS/INS combination model based on factor graph optimization (FGO) is investigated and the robustness of this optimization model is evaluated in comparison to the traditional extended Kalman filter (EKF) model and robust Kalman filter (RKF) model. In this paper, both high- and low-accuracy GNSS/INS combination data are used and the two sets of urban scene data are collected using high- and low-precision consumer-grade inertial guidance systems and an in-vehicle setup. The experimental results demonstrate that the position, velocity, and attitude estimates obtained using the GNSS/INS and the FGO model are superior to those obtained using the traditional EKF and robust EKF methods. In the simulated scenarios involving gross interference and GNSS signal loss, the FGO model achieves optimal results. The maximum improvement rates of the position, velocity, and attitude estimates are 81.1%, 73.8%, and 75.1% compared to the EKF method and 79.8%, 72.1%, and 57.1% compared to the RKF method, respectively. [ABSTRACT FROM AUTHOR]
- Published
- 2025
- Full Text
- View/download PDF