1. GHSR in a Subset of GABA Neurons Controls Food Deprivation-Induced Hyperphagia in Male Mice.
- Author
-
Cornejo MP, Fernandez G, Cabral A, Barrile F, Heredia F, García Romero G, Zubimendi Sampieri JP, Quelas JI, Cantel S, Fehrentz JA, Alonso A, Pla R, Ferran JL, Andreoli MF, De Francesco PN, and Perelló M
- Subjects
- Animals, Male, Mice, Mice, Transgenic, Agouti-Related Protein metabolism, Agouti-Related Protein genetics, Mice, Inbred C57BL, GABAergic Neurons metabolism, Receptors, Ghrelin genetics, Receptors, Ghrelin metabolism, Hyperphagia metabolism, Ghrelin metabolism, Ghrelin pharmacology, Arcuate Nucleus of Hypothalamus metabolism, Food Deprivation physiology, Glutamate Decarboxylase metabolism, Glutamate Decarboxylase genetics
- Abstract
The growth hormone secretagogue receptor (GHSR), primarily known as the receptor for the hunger hormone ghrelin, potently controls food intake, yet the specific Ghsr-expressing cells mediating the orexigenic effects of this receptor remain incompletely characterized. Since Ghsr is expressed in gamma-aminobutyric acid (GABA)-producing neurons, we sought to investigate whether the selective expression of Ghsr in a subset of GABA neurons is sufficient to mediate GHSR's effects on feeding. First, we crossed mice that express a tamoxifen-dependent Cre recombinase in the subset of GABA neurons that express glutamic acid decarboxylase 2 (Gad2) enzyme (Gad2-CreER mice) with reporter mice, and found that ghrelin mainly targets a subset of Gad2-expressing neurons located in the hypothalamic arcuate nucleus (ARH) and that is predominantly segregated from Agouti-related protein (AgRP)-expressing neurons. Analysis of various single-cell RNA-sequencing datasets further corroborated that the primary subset of cells coexpressing Gad2 and Ghsr in the mouse brain are non-AgRP ARH neurons. Next, we crossed Gad2-CreER mice with reactivable GHSR-deficient mice to generate mice expressing Ghsr only in Gad2-expressing neurons (Gad2-GHSR mice). We found that ghrelin treatment induced the expression of the marker of transcriptional activation c-Fos in the ARH of Gad2-GHSR mice, yet failed to induce food intake. In contrast, food deprivation-induced refeeding was higher in Gad2-GHSR mice than in GHSR-deficient mice and similar to wild-type mice, suggesting that ghrelin-independent roles of GHSR in a subset of GABA neurons is sufficient for eliciting full compensatory hyperphagia in mice., (© The Author(s) 2024. Published by Oxford University Press on behalf of the Endocrine Society. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com. See the journal About page for additional terms.)
- Published
- 2024
- Full Text
- View/download PDF