1. Solar wind rotation rate and shear at coronal hole boundaries
- Author
-
R. Kieokaew, Léa Griton, N. Fargette, A. P. Rouillard, Rui Pinto, Nicolas Poirier, A. S. Brun, A. Kouloumvakos, Benoit Lavraud, Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), We acknowledge support from the French space agency (Centre National des Études Spatiales, CNES, STORMS, ERC SLOW_SOURCE project DLV-819189. ERC synergy grant Whole Sun #810218., Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), and Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)
- Subjects
010504 meteorology & atmospheric sciences ,Astrophysics::High Energy Astrophysical Phenomena ,Flux ,Coronal hole ,FOS: Physical sciences ,Context (language use) ,Astrophysics ,Rotation ,01 natural sciences ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,010303 astronomy & astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) ,Sun: rotation ,0105 earth and related environmental sciences ,Physics ,Sun: corona ,Astronomy and Astrophysics ,Geophysics ,Corona ,Magnetic field ,Solar wind ,Astrophysics - Solar and Stellar Astrophysics ,solar wind ,13. Climate action ,Space and Planetary Science ,Physics::Space Physics ,Solar rotation ,Astrophysics::Earth and Planetary Astrophysics ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
In-situ measurements by several spacecraft have revealed that the solar wind is frequently perturbed by transient structures (magnetic folds, jets, waves, flux-ropes) that propagate rapidly away from the Sun over large distances. Parker Solar Probe has detected frequent rotations of the magnetic field vector at small heliocentric distances, accompanied by surprisingly large solar wind rotation rates. The physical origin of such magnetic field bends, the conditions for their survival across the interplanetary space, and their relation to solar wind rotation are yet to be clearly understood. We traced measured solar wind flows from the spacecraft position down to the surface of the Sun to identify their potential source regions and used a global MHD model of the corona and solar wind to relate them to the rotational state of the low solar corona. We identified regions of the solar corona for which solar wind speed and rotational shear are important and long-lived, that can be favourable to the development of magnetic deflections and to their propagation across extended heights in the solar wind. We show that coronal rotation is highly structured and that enhanced flow shear develops near the boundaries between coronal holes and streamers, around and above pseudo-streamers, even when such boundaries are aligned with the direction of solar rotation. A large fraction of the switchbacks identified by PSP map back to these regions, both in terms of instantaneous magnetic field connectivity and of the trajectories of wind streams that reach the spacecraft. These regions of strong shears are likely to leave an imprint on the solar wind over large distances and to increase the transverse speed variability in the slow solar wind. The simulations and connectivity analysis suggest they can be a source of the switchbacks and spikes observed by Parker Solar Probe., Comment: Accepted for publication in Astronomy & Astrophysics
- Published
- 2021