7 results on '"David Roma-Dollase"'
Search Results
2. Real-time interpolation of global ionospheric maps by means of sparse representation
- Author
-
Manuel Hernández-Pajares, Enric Monte-Moreno, David Roma-Dollase, Heng Yang, Ministerio de Ciencia, Innovación y Universidades (España), Generalitat de Catalunya, Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions, Universitat Politècnica de Catalunya. Departament de Matemàtiques, Universitat Politècnica de Catalunya. VEU - Grup de Tractament de la Parla, and Universitat Politècnica de Catalunya. IonSAT - Grup de determinació Ionosfèrica i navegació per SAtèl·lit i sistemes Terrestres
- Subjects
010504 meteorology & atmospheric sciences ,Computer science ,Vertical total electron content (VTEC) ,Enginyeria de la telecomunicació::Radiocomunicació i exploració electromagnètica [Àrees temàtiques de la UPC] ,Global navigation satellite system (GNSS) ,010502 geochemistry & geophysics ,Ionospheric pierce point ,01 natural sciences ,Lasso (statistics) ,Geochemistry and Petrology ,Real-time global ionospheric map ,Computers in Earth Sciences ,Ionosphere ,Linear combination ,Sparse representation ,0105 earth and related environmental sciences ,Total electron content ,Atomic decomposition interpolator of GIMs (ADIGIM) ,Ionosfera ,Sparse approximation ,Global navigation satellite system ,Geophysics ,GNSS applications ,Real-time global ionospheric map (RT-GIM) ,vertical total electron content ,Atomic decomposition interpolator of GIMs ,Algorithm ,Reference frame ,Interpolation - Abstract
In this paper, we propose a method for the generation of real-time global ionospheric map (RT-GIM) of vertical total electron content (VTEC) from GNSS measurements. The need for interpolation arises from the fact that the ionospheric pierce point (IPP) measurements from satellites to stations are not distributed uniformly over the ionosphere, leaving unfilled gaps at oceans or poles. The method we propose is based on using a high-quality historical database of post-processed GIMs that comprises more than two solar cycles, calculates the GIM by weighted superposition on a subset of the database with the compatible solar condition. The linear combination of GIMs in the database was obtained by minimizing a ℓ distance between VTEC measurements at the IPPs and the VTECs from the database, adding a ℓ penalization on the weights to assure a sparse solution. The process uses a Sun-fixed geomagnetic reference frame. This method uses the atomic decomposition/least absolute shrinkage and selection operator (LASSO), which will be denoted as atomic decomposition interpolator of GIMs (ADIGIM). As the computation is done in milliseconds, the interpolation is performed in real time. In this work, two products were developed, denoted as UADG and UARG, the UADG in real time and UARG with a latency of 24 h to benefit from the availability of a greater number of stations. The altimeter JASON3 VTEC measurements were used as reference. The quality of interpolated RT-GIMs from day 258 of 2019 to 155 of the year 2020 is compared with other RT/non-RT GIM products such as those from International GNSS Service (IGS), Centre National d’Etudes Spatiales (CNES), Chinese Academy of Sciences (CAS), Polytechnic University of Catalonia (UPC) and others. The RT ADIGIM performance proved to be better, nearly as good as the rapid or final GIMs computed retrospectively with delays of hours to days. Besides, the non-RT ADIGIM quality is as good or better than most GIM products. The oceanic regions have been included in the assessment which showed that ADIGIM interpolation gives the best estimation (referred to JASON3). The developed method, UADG, will constitute the next-generation UPC RT-GIM, and also UARG will improve the current product UQRG (the current UPC rapid GIM product computed retrospectively) due to its complementary information., This work has been partially supported by the Project PID2019-107579RB-I00 (MICINN). Also was partially supported by the 2017 SGR-0851 Grant of the Generalitat de Catalunya and by the EU Project 101007599 - PITHIA-NRF.
- Published
- 2021
3. Correction to: 'Methodology and consistency of slant and vertical assessments for ionospheric electron content models' and to 'Consistency of seven different GNSS global ionospheric mapping techniques during one solar cycle'
- Author
-
Manuel Hernández-Pajares and David Roma-Dollase
- Subjects
010504 meteorology & atmospheric sciences ,Computer science ,Computation ,010502 geochemistry & geophysics ,Geodesy ,01 natural sciences ,Physics::Geophysics ,Solar cycle ,Geophysics ,Geochemistry and Petrology ,Consistency (statistics) ,GNSS applications ,Physics::Space Physics ,Content (measure theory) ,Mapping techniques ,Satellite ,Computers in Earth Sciences ,Ionosphere ,0105 earth and related environmental sciences - Abstract
In the original publication of the articles, “Methodology and consistency of slant and vertical assessments for ionospheric electron content models” and “Consistency of seven different GNSS global ionospheric mapping techniques during one solar cycle”, a common typo affecting the text only (not the computations) has been recently noticed. It compromised the definition of the scaling factor from Global Navigation Satellite Systems ionospheric delay to electron content is clarified in this erratum.
- Published
- 2020
- Full Text
- View/download PDF
4. IGS real-time service for global ionospheric total electron content modeling
- Author
-
David Roma-Dollase, Ningbo Wang, Denis Laurichesse, Yunbin Yuan, Manuel Hernández-Pajares, Jiuping Zha, Ang Liu, Alexis Blot, Zishen Li, Heng Yang, Andrzej Krankowski, Alberto García-Rigo, National Natural Science Foundation of China, Chinese Academy of Sciences, National Key Research and Development Program (China), Universitat Politècnica de Catalunya. Departament de Matemàtiques, and Universitat Politècnica de Catalunya. IonSAT - Grup de determinació Ionosfèrica i navegació per SAtèl·lit i sistemes Terrestres
- Subjects
Total electron content (TEC) ,010504 meteorology & atmospheric sciences ,Ionosfera ,business.industry ,Computer science ,Matemàtiques i estadística::Matemàtica aplicada a les ciències [Àrees temàtiques de la UPC] ,Geofísica ,Real-time global ionospheric maps (RT-GIM) ,010502 geochemistry & geophysics ,Geodesy ,01 natural sciences ,Chinese academy of sciences ,RT experimental IGS combined ionospheric product ,State space representation (SSR) ,Real-time service (RTS) ,Geophysics ,Geochemistry and Petrology ,GNSS applications ,Ionospheric total electron content ,Global Positioning System ,Ionosphere ,Computers in Earth Sciences ,business ,0105 earth and related environmental sciences - Abstract
Benefiting from global multi-frequency and multi-constellation GNSS measurements provided by the experimental International GNSS real-time service (IGS RTS), a predicting-plus-modeling approach employed by Chinese Academy of Sciences (CAS) for the routine generation of real-time global ionospheric maps (RT-GIM) is first reported. Along with RT-GIMs generated by Universitat Politècnica de Catalunya (UPC), the quality of CAS and UPC RT-GIMs in IONEX format is assessed during a low soar activity period from September 2017 to December 2019. The differential slant total electron contents (dSTEC) derived from 50 GPS stations of the IGS and Jason-3 vertical TECs (VTEC) over the ocean are used as references. In comparison with different reference TECs, CAS and UPC RT-GIMs are approximately 1.7–4.9% and 8.6–12.5% worse than the respective post-processed GIMs CASG and UQRG, respectively. Using RTCM ionospheric data streams from CAS, Centre National d’Etudes Spatiales (CNES) and UPC, the first experimental IGS combined RT-GIM is generated and validated in actual real-time conditions. Compared to Jason-3 VTEC measurements available during the period of common availability, from October 2018 to April 2019, RT-GIM discrepancies present similar relative RMS errors, which are 33, 36, 36 and 38% for CNES, combined one, UPC and CAS, respectively. Aside from a better understanding of the influence of working in the original IONEX versus RTCM ionospheric formats, the update to a new experimental adaptation of RT strategy is highlighted by UPC, and the computation of multi-layer RT-GIM is emphasized by CAS in view of the inadequacy of single-layer ionospheric assumption in the presence of large latitudinal gradients., The authors acknowledge the IGS and other agencies for providing real-time GNSS data and products. This work was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDA17010202), the National Natural Science Foundation of China (41674043, 41704038), the National Key Research Program of China (2017YFGH002206), and the Youth Innovation Promotion Association of the Chinese Academy of Sciences.
- Published
- 2020
- Full Text
- View/download PDF
5. Consistency of seven different GNSS global ionospheric mapping techniques during one solar cycle
- Author
-
Panagiotis Vergados, Attila Komjathy, Jose M. Gómez-Cama, Manuel Hernández-Pajares, David Roma-Dollase, Yunbin Yuan, Hongping Zhang, Cheng Wang, Reza Ghoddousi-Fard, J. Feltens, Andrzej Krankowski, Kacper Kotulak, Alberto García-Rigo, Stefan Schaer, Chuang Shi, Zishen Li, Universitat de Barcelona, Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions, Universitat Politècnica de Catalunya. Departament de Matemàtiques, and Universitat Politècnica de Catalunya. IonSAT - Grup de determinació Ionosfèrica i navegació per SAtèl·lit i sistemes Terrestres
- Subjects
010504 meteorology & atmospheric sciences ,Computer science ,Context (language use) ,Global ionospheric maps ,01 natural sciences ,Sistema de posicionament global ,Consistency (database systems) ,Geochemistry and Petrology ,Global Positioning System ,0103 physical sciences ,Global navigation satellite systems ,Altimeter ,Ionosphere ,Computers in Earth Sciences ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences ,Remote sensing ,Total electron content ,Ionosfera ,Model validation ,Frame (networking) ,Geodesy ,Vertical total electron content ,Solar cycle ,GNSS (Sistema de navegació) ,Geophysics ,GNSS applications ,Enginyeria de la telecomunicació::Radiocomunicació i exploració electromagnètica::Satèl·lits i ràdioenllaços [Àrees temàtiques de la UPC] - Abstract
The final publication is available at Springer via http://dx.doi.org/10.1007/s00190-017-1088-9. In the context of the International GNSS Service (IGS), several IGS Ionosphere Associated Analysis Centers have developed different techniques to provide global ionospheric maps (GIMs) of vertical total electron content (VTEC) since 1998. In this paper we present a comparison of the performances of all the GIMs created in the frame of IGS. Indeed we compare the classical ones (for the ionospheric analysis centers CODE, ESA/ESOC, JPL and UPC) with the new ones (NRCAN, CAS, WHU). To assess the quality of them in fair and completely independent ways, two assessment methods are used: a direct comparison to altimeter data (VTEC-altimeter) and to the difference of slant total electron content (STEC) observed in independent ground reference stations (dSTEC-GPS). The main conclusion of this study, performed during one solar cycle, is the consistency of the results between so many different GIM techniques and implementations.
- Published
- 2017
- Full Text
- View/download PDF
6. Precise ionospheric electron content monitoring from single-frequency GPS receivers
- Author
-
Miquel Garcia-Fernandez, Alberto García-Rigo, Manuel Hernández-Pajares, David Roma-Dollase, Raul Orus-Perez, Universitat Politècnica de Catalunya. Departament de Matemàtiques, Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions, Universitat Politècnica de Catalunya. IonSAT - Grup de determinació Ionosfèrica i navegació per SAtèl·lit i sistemes Terrestres, and Universitat de Barcelona
- Subjects
Astrofísica ,010504 meteorology & atmospheric sciences ,Solar eclipse ,85 Astronomy and astrophysics [Classificació AMS] ,Matemàtiques i estadística::Matemàtica aplicada a les ciències [Àrees temàtiques de la UPC] ,Solar eclipse effects ,010502 geochemistry & geophysics ,01 natural sciences ,Single-frequency GNSS ionospheric determination ,Sistema de posicionament global ,Global Positioning System ,Ionosphere ,0105 earth and related environmental sciences ,Eclipse ,Física [Àrees temàtiques de la UPC] ,Total electron content ,Ionosfera ,business.industry ,Geofísica ,Geodesy ,Ionospheric sounding ,Galileo ionospheric determination ,Geophysics ,Sidereal time ,GNSS applications ,Eclipsis solars ,Astronomy and astrophysics ,General Earth and Planetary Sciences ,Solar eclipses ,86 Geophysics [Classificació AMS] ,business ,Geology ,Multipath propagation - Abstract
This is a post-peer-review, pre-copyedit version of an article published in Gps solutions. The final authenticated version is available online at: http://dx.doi.org/10.1007/s10291-018-0767-1 The number of existing global positioning system (GPS) single-frequency receivers continues growing. More than 90% of GPS receivers are implemented as low-cost single-frequency chipsets embedded in smartphones. This provides new opportunities, in particular for ionospheric sounding. In this context, we present the new sidereal days ionospheric graphic (SIg) combination of single-frequency GNSS measurements. SIg is able to monitor, for each given GNSS transmitter–receiver pair, the vertical total electron content (VTEC) relative to the previous observation with the same or almost the same line-of-sight (LOS) vector. In such arrangements the SIg multipath error mostly cancels, thus increasing the accuracy of the ¿VTEC significantly. This happens for the GPS constellation after one sidereal day (about 23 h 56 m) and for Galileo after 10 sidereal days approximately. Moreover, we show that the required calibration of the corresponding carrier phase ambiguity can be accurately performed by means of VTEC global ionospheric maps (GIMs). The results appear almost as accurate as those based on the dual-frequency technique, i.e., about 1 TECU or better, and with much more precision and resolution than the GIM values in the ionospheric region sounded by each given single-frequency receiver. The performance is demonstrated using actual data from 9 permanent GPS receivers during a total solar eclipse on August 21, 2017 over North America, where the corresponding ionospheric footprint is clearly detected in agreement with the total solar eclipse predictions. The advantages of extending SIg to lower carrier frequencies and the feasibility of applying it to other global navigation satellite system (GNSS) systems are also studied. This is shown in terms of a fully consistent VTEC depletion signature of the same eclipse phenomena, obtained with Galileo-only data in North America at mid and low latitude. Finally the SIg feasibility, including the cycle slip detection, is shown as well with actual mass-market single frequency GPS receivers at mid and high latitude.
- Published
- 2018
- Full Text
- View/download PDF
7. Methodology and consistency of slant and vertical assessments for ionospheric electron content models
- Author
-
Andrzej Krankowski, David Roma-Dollase, Raul Orus-Perez, Manuel Hernández-Pajares, Alberto García-Rigo, Universitat Politècnica de Catalunya. Departament de Matemàtiques, Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions, and Universitat Politècnica de Catalunya. IonSAT - Grup de determinació Ionosfèrica i navegació per SAtèl·lit i sistemes Terrestres
- Subjects
010504 meteorology & atmospheric sciences ,Meteorology ,Computer science ,TEC ,85 Astronomy and astrophysics [Classificació AMS] ,Matemàtiques i estadística::Matemàtica aplicada a les ciències [Àrees temàtiques de la UPC] ,Context (language use) ,01 natural sciences ,Matemàtiques i estadística::Anàlisi numèrica [Àrees temàtiques de la UPC] ,Geochemistry and Petrology ,Consistency (statistics) ,0103 physical sciences ,Validation of ionospheric electron content models ,Computers in Earth Sciences ,Ionosphere ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences ,Total electron content ,business.industry ,Ionosfera ,Satellite navigation systems ,Geofísica ,Geodesy ,Simple random sample ,Geophysics ,GNSS applications ,Global Positioning System ,Satellite ,86 Geophysics [Classificació AMS] ,business - Abstract
The final publication is available at Springer via http://dx.doi.org/10.1007/s00190-017-1032-z A summary of the main concepts on global ionospheric map(s) [hereinafter GIM(s)] of vertical total electron content (VTEC), with special emphasis on their assessment, is presented in this paper. It is based on the experience accumulated during almost two decades of collaborative work in the context of the international global navigation satellite systems (GNSS) service (IGS) ionosphere working group. A representative comparison of the two main assessments of ionospheric electron content models (VTEC-altimeter and difference of Slant TEC, based on independent global positioning system data GPS, dSTEC-GPS) is performed. It is based on 26 GPS receivers worldwide distributed and mostly placed on islands, from the last quarter of 2010 to the end of 2016. The consistency between dSTEC-GPS and VTEC-altimeter assessments for one of the most accurate IGS GIMs (the tomographic-kriging GIM ‘UQRG’ computed by UPC) is shown. Typical error RMS values of 2 TECU for VTEC-altimeter and 0.5 TECU for dSTEC-GPS assessments are found. And, as expected by following a simple random model, there is a significant correlation between both RMS and specially relative errors, mainly evident when large enough number of observations per pass is considered. The authors expect that this manuscript will be useful for new analysis contributor centres and in general for the scientific and technical community interested in simple and truly external ways of validating electron content models of the ionosphere.
- Published
- 2017
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.