34 results on '"Jérôme Benveniste"'
Search Results
2. Preface to the Special Issue on Satellite Altimetry over Land and Coastal Zones: Applications and Challenges
- Author
-
Cheinway Hwang, Jérôme Benveniste, Yamin Dang, and and C. K. Shum
- Subjects
geophysics ,geology ,atmospheric science ,space science ,oceanic science ,hydrology ,Geology ,QE1-996.5 ,Geophysics. Cosmic physics ,QC801-809 - Abstract
This special issue publishes peer reviewed papers stemming from the International Workshop on Coast and Land applications of satellite altimetry, held 21 -22 July 2006, Beijing, China. This workshop is financially supported by the Chinese Academy of Surveying and Mapping, National Chiao Tung University, Asia GIS and GPS Co., Chung-Hsing Surv. Co., Huanyu Surv. Eng. Cons. Inc., and Real-World Eng. Cons. Inc. Twenty-two papers were submitted to this issue for review, and 16 papers were accepted following an iterative peer-review process. The accepted papers cover subjects on: ICESat coastal altimetry (1), satellite altimetry applications in solid earth sciences (2), hydrology (4), land/coast gravity field modeling (4), and coastal oceanography (5).
- Published
- 2008
3. Modeling Envisat RA-2 waveforms in the coastal zone: Case study of calm water contamination
- Author
-
Graham D. Quartly, Christine Gommenginger, Stefano Vignudelli, Jesús Gómez-Enri, Peter Challenor, Jérôme Benveniste, and Paolo Cipollini
- Subjects
Storm surge ,FOS: Physical sciences ,Storm ,Sea-surface height ,Geotechnical Engineering and Engineering Geology ,law.invention ,Marine pollution ,Physics - Atmospheric and Oceanic Physics ,law ,Climatology ,Atmospheric and Oceanic Physics (physics.ao-ph) ,Tide gauge ,Altimeter ,Electrical and Electronic Engineering ,Radar ,Digital elevation model ,Geology - Abstract
Radar altimeters have so far had limited use in the coastal zone, the area with most societal impact. This is due to both lack of, or insufficient accuracy in the necessary corrections, and more complicated altimeter signals. This letter examines waveform data from the Envisat RA-2 as it passes regularly over Pianosa (a 10-km2 island in the northwestern Mediterranean). Forty-six repeat passes were analyzed, with most showing a reduction in signal upon passing over the island, with weak early returns corresponding to the reflections from land. Intriguingly, one third of cases showed an anomalously bright hyperbolic feature. This feature may be due to extremely calm waters in the Golfo della Botte (northern side of the island), but the cause of its intermittency is not clear. The modeling of waveforms in such a complex land/sea environment demonstrates the potential for sea surface height retrievals much closer to the coast than is achieved by routine processing. The long-term development of altimetric records in the coastal zone will not only improve the calibration of altimetric data with coastal tide gauges but also greatly enhance the study of storm surges and other coastal phenomena.
- Published
- 2023
- Full Text
- View/download PDF
4. A RIP-based SAR retracker and its application in North East Atlantic with Sentinel-3
- Author
-
Sebastian Grayek, M. Joana Fernandes, Jérôme Benveniste, Remko Scharroo, Salvatore Dinardo, Matthias Becker, Luciana Fenoglio-Marc, and Joanna Staneva
- Subjects
Synthetic aperture radar ,Atmospheric Science ,Radiometer ,010504 meteorology & atmospheric sciences ,Mode (statistics) ,Aerospace Engineering ,Astronomy and Astrophysics ,01 natural sciences ,law.invention ,Troposphere ,Wave model ,Geophysics ,Space and Planetary Science ,Radar altimeter ,law ,0103 physical sciences ,General Earth and Planetary Sciences ,Tide gauge ,Altimeter ,010303 astronomy & astrophysics ,Geology ,0105 earth and related environmental sciences ,Remote sensing - Abstract
Just as CryoSat-2, Sentinel-3 embarks on board a radar altimeter (SRAL) with the novel Synthetic Aperture Radar (SAR) mode that enables higher resolution and more accurate altimeter-derived parameters in the coastal zone, thanks to the reduced along-track footprint. Exploiting the SAR data in the recent years, many researchers have already proven that the performance of SAR altimetry with specific coastal retrackers is superior to collocated Pseudo-Low Resolution Mode (PLRM) coastal altimetry algorithms but they also pointed out that residual errors due to land contamination are still present in the very proximity of the land (0–3 km). The objective of this work is to further improve these results by exploiting extra information provided by SAR altimeters, namely the so-called Range Integrated Power (RIP), the new waveform built by a simple integration of the Doppler beams in the range direction. The RIP characterizes the backscattering state of the ground cell, towards which all the Doppler beams have been steered. These developments lead to a new retracker, here coined SAMOSA++, in which the RIP, as computed from the L1B-S data, is converted into a surface backscattering profile and directly integrated in the SAMOSA retracker as part of the model formulation itself. In this way, the modified SAMOSA model is automatically and autonomously able to cope with the different return waveform shapes from different surface types: either diffusive or specular. The mean square slope computed from the RIP is also estimated, representing a new output of the retracker. The performance of this new retracker is here cross-compared against its previous version, SAMOSA+, and against the standard Sentinel-3 marine PDGS (Payload Data Ground Segment) SAR retracker (SAMOSA2) in both coastal zone and open ocean in order to ensure a seamless transition between these zones. The new retracker SAMOSA++ is validated in the North East Atlantic region, where appropriate in situ validation data are available. The retrievals from the new retracker are cross-compared against the network of tide gauges and buoys in the German Bight and versus the output of the GCOAST Helmholtz-Zentrum Geesthacht (HZG) regional circulation and wave model. In addition, sea level estimates derived with different ocean tide and wet path delay geophysical correction models are compared. Results indicate that in this region the best geophysical correction models are the FES2014b tide model and the GPD+ wet tropospheric correction that incorporates data from the Sentinel-3 on-board radiometer. Analyses show that both SAMOSA+ and SAMOSA++ ensure the continuity of the PDGS SAR Marine retracker in the open ocean, leading to clear improvements in the coastal zone, larger for SAMOSA++ than for SAMOSA+. In summary, the new SAMOSA++ retracker retrieves more accurate altimetric parameters in the coastal zone, with a better consistency with respect to regional ocean models and in situ data.
- Published
- 2021
- Full Text
- View/download PDF
5. Altimetry-based sea level trends along the coasts of Western Africa
- Author
-
Marcello Passaro, Anny Cazenave, Jean François Legeais, Fabien Léger, Florence Birol, Rafael Almar, Jérôme Benveniste, Florence Marti, and Fernando Niño
- Subjects
Atmospheric Science ,010504 meteorology & atmospheric sciences ,Aerospace Engineering ,Climate change ,Astronomy and Astrophysics ,Context (language use) ,Pelagic zone ,01 natural sciences ,ddc ,Geophysics ,Space and Planetary Science ,Climatology ,0103 physical sciences ,Period (geology) ,General Earth and Planetary Sciences ,Satellite ,Submarine pipeline ,Altimeter ,010303 astronomy & astrophysics ,Geology ,Sea level ,0105 earth and related environmental sciences - Abstract
We present results of contemporary coastal sea level changes along the coasts of Western Africa, obtained from a dedicated reprocessing of satellite altimetry data done in the context of the ESA ‘Climate Change Initiative’ sea level project. High sampling rate (20 Hz) sea level data from the Jason-1 and Jason-2 missions over a 14-year-long time span (July 2002 to June 2016) are considered. The data were first retracked using the ALES adaptative leading edge subwaveform retracker. The X-TRACK processing system developed to optimize the completeness and accuracy of the corrected sea level time series in coastal ocean areas was then applied. From the 14-year long sea level time series finally obtained, we estimate sea level trends along the Jason-1 & 2 tracks covering the study region. We analyze regional variations in sea level trends, with a focus on the changes observed between the open ocean to the coastal zone. Compared to the conventional 1 Hz sea level products dedicated to open ocean applications, the retracked 20 Hz measurements used in this study allow us to retrieve valid sea level information much closer to the coast (less than 3–4 km to the coast, depending on the satellite track location). The main objective of this study is twofold: (1) provide sea level products in the coastal areas from reprocessed altimetry data and (2) check whether sea level changes at the coast differ from that reported in the open ocean with conventional altimetry products. In the selected region, results show that over the study period, sea level trends observed near the coast of Western Africa are significantly different than offshore trends. In order to assess the robustness of the results, detailed analyses are performed at several locations to discriminate between possible drifts in the geophysical corrections and physical processes potentially able to explain the sea level changes observed close to the coast.
- Published
- 2021
- Full Text
- View/download PDF
6. Coastal sea level anomalies and associated trends from Jason satellite altimetry over 2002–2018
- Author
-
Habib B. Dieng, Marcello Passaro, Jean François Legeais, Yvan Gouzenes, Anny Cazenave, Jérôme Benveniste, Fabien Léger, Andy Shaw, Fernando Niño, Christian Schwatke, Florence Birol, Francisco M. Calafat, and Deutsches Geodätisches Forschungsinstitut (DGFI-TUM)
- Subjects
Statistics and Probability ,Data Descriptor ,010504 meteorology & atmospheric sciences ,Physical oceanography ,Library and Information Sciences ,010502 geochemistry & geophysics ,01 natural sciences ,ddc ,Computer Science Applications ,Education ,Oceanography ,Ocean sciences ,Satellite altimetry ,lcsh:Q ,Statistics, Probability and Uncertainty ,lcsh:Science ,Geology ,0105 earth and related environmental sciences ,Information Systems ,Coastal sea - Abstract
Climate-related sea level changes in the world coastal zones result from the superposition of the global mean rise due to ocean warming and land ice melt, regional changes caused by non-uniform ocean thermal expansion and salinity changes, and by the solid Earth response to current water mass redistribution and associated gravity change, plus small-scale coastal processes (e.g., shelf currents, wind & waves changes, fresh water input from rivers, etc.). So far, satellite altimetry has provided global gridded sea level time series up to 10–15 km to the coast only, preventing estimation of sea level changes very close to the coast. Here we present a 16-year-long (June 2002 to May 2018), high-resolution (20-Hz), along-track sea level dataset at monthly interval, together with associated sea level trends, at 429 coastal sites in six regions (Northeast Atlantic, Mediterranean Sea, Western Africa, North Indian Ocean, Southeast Asia and Australia). This new coastal sea level product is based on complete reprocessing of raw radar altimetry waveforms from the Jason-1, Jason-2 and Jason-3 missions., Measurement(s) coastal sea level changes Technology Type(s) satellite imaging of a planet • computational modeling technique Factor Type(s) year of data collection Sample Characteristic - Environment coastal sea water • sea coast • ocean Sample Characteristic - Location Northeast Atlantic Ocean • Mediterranean Sea • West Africa • North Indian Ocean • Southeast Asia • Australia Machine-accessible metadata file describing the reported data: 10.6084/m9.figshare.12999596
- Published
- 2020
- Full Text
- View/download PDF
7. Monitoring the ocean heat content change and the Earth energy imbalance from space altimetry and space gravimetry
- Author
-
Rémi Jugier, Jérôme Benveniste, Anne Barnoud, Julia Pfeffer, Gilles Larnicol, Jonathan Chenal, Robin Fraudeau, Alejandro Blazquez, Benoit Meyssignac, Florence Marti, Marco Restano, Michael Ablain, Laboratoire d'études en Géophysique et océanographie spatiales (LEGOS), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), and Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)
- Subjects
QE1-996.5 ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,Geodetic datum ,Geology ,Atmospheric sciences ,Environmental sciences ,Earth system science ,Atmosphere ,[SDU]Sciences of the Universe [physics] ,General Earth and Planetary Sciences ,Environmental science ,GE1-350 ,Altimeter ,Gravimetry ,Ocean heat content ,Proxy (statistics) ,Argo - Abstract
The Earth energy imbalance (EEI) at the top of the atmosphere is responsible for the accumulation of heat in the climate system. Monitoring the EEI is therefore necessary to better understand the Earth's warming climate. Measuring the EEI is challenging as it is a globally integrated variable whose variations are small (0.5–1 W m−2) compared to the amount of energy entering and leaving the climate system (∼340 W m−2). Since the ocean absorbs more than 90 % of the excess energy stored by the Earth system, estimating the ocean heat content (OHC) change provides an accurate proxy of the EEI. This study provides a space geodetic estimation of the OHC changes at global and regional scales based on the combination of space altimetry and space gravimetry measurements. From this estimate, the global variations in the EEI are derived with realistic estimates of its uncertainty. The mean EEI value is estimated at +0.74±0.22 W m−2 (90 % confidence level) between August 2002 and August 2016. Comparisons against estimates based on Argo data and on CERES measurements show good agreement within the error bars of the global mean and the time variations in EEI. Further improvements are needed to reduce uncertainties and to improve the time series, especially at interannual timescales. The space geodetic OHC-EEI product (version 2.1) is freely available at https://doi.org/10.24400/527896/a01-2020.003 (Magellium/LEGOS, 2020).
- Published
- 2021
- Full Text
- View/download PDF
8. Corrigendum to 'Coastal SAR and PLRM altimetry in German Bight and West Baltic Sea' [Adv. Space Res. 62 (2018) 1371–1404]
- Author
-
Remko Scharroo, Salvatore Dinardo, Matthias Becker, Christopher Buchhaupt, M. Joana Fernandes, Jérôme Benveniste, and Luciana Fenoglio-Marc
- Subjects
Atmospheric Science ,Geophysics ,Oceanography ,Baltic sea ,Space and Planetary Science ,Aerospace Engineering ,General Earth and Planetary Sciences ,German bight ,Astronomy and Astrophysics ,Altimeter ,Geology - Published
- 2020
- Full Text
- View/download PDF
9. Sentinel-3 Delay-Doppler altimetry over Antarctica
- Author
-
Marco Restano, Andrew Shepherd, Pierre Thibaut, Jérôme Benveniste, Monica Roca, Alan Muir, Malcolm McMillan, Américo Ambrózio, Jérémie Aublanc, and Roger Escolà
- Subjects
Accuracy and precision ,010504 meteorology & atmospheric sciences ,0211 other engineering and technologies ,Antarctic ice sheet ,02 engineering and technology ,01 natural sciences ,Operational system ,symbols.namesake ,Subglacial lake ,Altimeter ,lcsh:Environmental sciences ,021101 geological & geomatics engineering ,0105 earth and related environmental sciences ,Earth-Surface Processes ,Water Science and Technology ,lcsh:GE1-350 ,geography ,geography.geographical_feature_category ,lcsh:QE1-996.5 ,Elevation ,Geodesy ,lcsh:Geology ,symbols ,Ice sheet ,Doppler effect ,Geology - Abstract
The launch of Sentinel-3A in February 2016 represented the beginning of a new long-term series of operational satellite radar altimeters, which will provide Delay-Doppler altimetry measurements over ice sheets for decades to come. Given the potential benefits that these satellites can offer to a range of glaciological applications, it is important to establish their capacity to monitor ice sheet elevation and elevation change. Here, we present the first analysis of Sentinel-3 Delay-Doppler altimetry over the Antarctic ice sheet, and assess the accuracy and precision of retrievals of ice sheet elevation across a range of topographic regimes. Over the low-slope regions of the ice sheet interior, we find that the instrument achieves both an accuracy and a precision of the order of 10 cm, with ∼98 % of the data validated being within 50 cm of co-located airborne measurements. Across the steeper and more complex topography of the ice sheet margin, the accuracy decreases, although analysis at two coastal sites with densely surveyed airborne campaigns shows that ∼60 %–85 % of validated data are still within 1 m of co-located airborne elevation measurements. We then explore the utility of the Sentinel-3A Delay-Doppler altimeter for mapping ice sheet elevation change. We show that with only 2 years of available data, it is possible to resolve known signals of ice dynamic imbalance and to detect evidence of subglacial lake drainage activity. Our analysis demonstrates a new, long-term source of measurements of ice sheet elevation and elevation change, and the early potential of this operational system for monitoring ice sheet imbalance for decades to come.
- Published
- 2019
- Full Text
- View/download PDF
10. CryoSat-2’s contribution to the complete sea level records from the Polar Oceans
- Author
-
Jérôme Benveniste, Sara Fleury, Carsten Ankjær Ludwigsen, Ole Baltazar Andersen, Stine Kildegaard Rose, Salvatore Dinardo, Michel Tsamados, and Jerome Bouffard
- Subjects
Oceanography ,Polar ,Geology ,Sea level - Published
- 2021
- Full Text
- View/download PDF
11. Coastal sea level changes in Africa from retracked Jason altimetry over 2002-2020
- Author
-
Anny Cazenave, Francisco M. Calafat, Fernando Niño, Yvan Gouzenes, Jean-François Legeais, Florence Birol, Jérôme Benveniste, Fabien Léger, Marcello Passaro, and Andy Shaw
- Subjects
Oceanography ,Altimeter ,Geology ,Coastal sea - Abstract
Climate-related sea level changes in the world coastal zones result from the superposition of the global mean rise due to ocean warming and land ice melt, regional changes mostly caused by non-uniform ocean thermal expansion and salinity changes, and small-scale coastal processes (e.g., shelf currents, wind & waves changes, fresh water input from rivers, etc.). So far, satellite altimetry has provided global gridded sea level time series up to 10-15 km to the coast only, preventing estimation of sea level changes very close to the coast. In the context of the ESA Climate Change Initiative coastal sea level project, we have developed a complete reprocessing of high-resolution (20 Hz) Jason-1, 2 and 3 altimetry data along the world coastal zones using the ALES (Adaptative Leading Edge Subwaveform) retracker combined with the XTRACK system dedicated to improve geophysical corrections at the coast. Here we present coastal sea level trends over the period 2002-2020 along the whole African continent. Different coastal sea level trend behaviors are observed over the study period. We compare the computed coastal trends in Africa with results we previously obtained in other regions (Mediterranean Sea, Northeastern Europe, north Indian Sea, southeast Asia and Australia).
- Published
- 2021
- Full Text
- View/download PDF
12. The X-TRACK/ALES multi-mission processing system: New advances in altimetry towards the coast
- Author
-
Florence Birol, Christian Schwatke, Anny Cazenave, Marcello Passaro, Francisco M. Calafat, Fernando Niño, Andy Shaw, Fabien Léger, Yvan Gouzenes, Jean-François Legeais, Jérôme Benveniste, Laboratoire d'études en Géophysique et océanographie spatiales (LEGOS), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Collecte Localisation Satellites (CLS), and Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Centre National d'Études Spatiales [Toulouse] (CNES)
- Subjects
Atmospheric Science ,010504 meteorology & atmospheric sciences ,Ocean current ,Coastal ocean ,Aerospace Engineering ,Climate change ,Astronomy and Astrophysics ,Context (language use) ,Track (rail transport) ,01 natural sciences ,Geophysics ,Mediterranean sea ,Space and Planetary Science ,[SDU]Sciences of the Universe [physics] ,Climatology ,0103 physical sciences ,General Earth and Planetary Sciences ,Tide gauge ,Satellite altimetry ,Sea level ,Altimeter ,010303 astronomy & astrophysics ,Geology ,0105 earth and related environmental sciences - Abstract
International audience; In the context of the ESA Climate Change Initiative project, a new coastal sea level altimetry product has been developed in order to support advances in coastal sea level variability studies. Measurements from Jason-1,2&3 missions have been retracked with the Adaptive Leading Edge Subwaveform (ALES) Retracker and then ingested in the X-TRACK software with the best possible set of altimetry corrections. These two coastal altimetry processing approaches, previously successfully validated and applied to coastal sea level research, are combined here for the first time in order to derive a 16-year-long (June 2002 to May 2018), high-resolution (20-Hz), along-track sea level dataset in six regions: Northeast Atlantic, Mediterranean Sea, West Africa, North Indian Ocean, Southeast Asia and Australia. The study demonstrates that this new coastal sea level product called X-TRACK/ALES is able to extend the spatial coverage of sea level altimetry data ~3.5 km in the land direction, when compared to the X-TRACK 1-Hz dataset. We also observe a large improvement in coastal sea level data availability from Jason-1 to Jason-3, with data at 3.6 km, 1.9 km and 0.9 km to the coast on average, for Jason-1, Jason-2 and Jason-3, respectively. When combining measurements from Jason-1 to Jason-3, we reach a distance of 1.2-4 km to the coast. When compared to tide gauge data, the accuracy of the new altimetry near-shore sea level estimations also improves. In terms of correlations with a large set of independent tide gauge observations selected in the six regions, we obtain an average value of 0.77. We also show that it is now possible to derive from the X-TRACK/ALES product an estimation of the ocean current variability up to 5 km to the coast. This new altimetry dataset, freely available, will provide a valuable contribution of altimetry in coastal marine research community.
- Published
- 2021
- Full Text
- View/download PDF
13. Preface: 25 years of progress in radar altimetry
- Author
-
Pascal Bonnefond and Jérôme Benveniste
- Subjects
Atmospheric Science ,Geophysics ,Space and Planetary Science ,Aerospace Engineering ,General Earth and Planetary Sciences ,Astronomy and Astrophysics ,Geology ,Radar altimetry ,Remote sensing - Published
- 2021
- Full Text
- View/download PDF
14. North SEAL: a new dataset of sea level changes in the North Sea from satellite altimetry
- Author
-
J Oelsmann, Florian Seitz, Jérôme Benveniste, Felix L. Müller, Marco Restano, Denise Dettmering, Christian Schwatke, Marcello Passaro, and Deutsches Geodätisches Forschungsinstitut (DGFI-TUM)
- Subjects
QE1-996.5 ,Series (stratigraphy) ,010504 meteorology & atmospheric sciences ,010505 oceanography ,Geology ,Post-glacial rebound ,01 natural sciences ,ddc ,Environmental sciences ,Climatology ,Period (geology) ,General Earth and Planetary Sciences ,GE1-350 ,Tide gauge ,Spatial variability ,Anomaly detection ,Altimeter ,Sea level ,0105 earth and related environmental sciences - Abstract
Information on sea level and its temporal and spatial variability is of great importance for various scientific, societal, and economic issues. This article reports about a new sea level dataset for the North Sea (named North SEAL) of monthly sea level anomalies (SLAs), absolute sea level trends, and amplitudes of the mean annual sea level cycle over the period 1995–2019. Uncertainties and quality flags are provided together with the data. The dataset has been created from multi-mission cross-calibrated altimetry data preprocessed with coastal dedicated approaches and gridded with an innovative least-squares procedure including an advanced outlier detection to a 6–8 km wide triangular mesh. The comparison of SLAs and tide gauge time series shows good consistency, with average correlations of 0.85 and maximum correlations of 0.93. The improvement with respect to existing global gridded altimetry solutions amounts to 8 %–10 %, and it is most pronounced in complicated coastal environments such as river mouths or regions sheltered by islands. The differences in trends at tide gauge locations depend on the vertical land motion model used to correct relative sea level trends. The best consistency with a median difference of 0.04±1.15 mm yr−1 is reached by applying a recent glacial isostatic adjustment (GIA) model. With the presented sea level dataset, for the first time, a regionally optimized product for the entire North Sea is made available. It will enable further investigations of ocean processes, sea level projections, and studies on coastal adaptation measures. The North SEAL data are available at https://doi.org/10.17882/79673 (Müller et al., 2021).
- Published
- 2020
15. A Robust Error Characterization Method for SAR Altimetry over the Inland Water Domain
- Author
-
Martina Wenzl, Marco Restano, and Jérôme Benveniste
- Subjects
Altimeter ,Geology ,Domain (software engineering) ,Remote sensing ,Characterization (materials science) - Abstract
The advent of SAR (delay-Doppler) altimetry allowed the production of data with a high spatial resolution (300 m along-track). Investigations in the inland water domain clearly benefited from SAR data and future processing strategies (e.g. the fully-focused SAR, FF-SAR) are expected to improve further the quantity of data points over water bodies of a reduced size.The proposed work aims at investigating the quality of Sentinel-3 water level retrievals over three targets of different characteristics: the Ohio River, the Columbia River and the Great Salt Lake. Data are processed through the ESA G-POD SARvatore online and on-demand processing service for the exploitation of CryoSat-2 and Sentinel-3 data (https://gpod.eo.esa.int/services/SENTINEL3_SAR/) and obtained by using the SAMOSA2, SAMOSA+ & SAMOSA++ retrackers. The selected posting rate of measurements is 80 Hz to optimize the location of data points over the Ohio and Columbia River (an estimate every 80 m along-track), however a comparison with the 20 Hz posting rate is being made. Empirical retrackers outputs, available in the official 20 Hz Sentinel-3 LAN products, are also considered for comparison and water masks from (Pekel et al., 2016) are used to select data points acquired over water bodies.The main goal of this study is to analyse the key parameters characterizing both the L1b SAR waveform and the retracking (e.g. the Pulse Peakiness, the Misfit…) to define a robust error characterization method that is expected to filter out an increased number of outliers. A validation exercise using in situ data will be presented to demonstrate that the proposed method leads to the definition of a reduced, highly reliable dataset, associated with a realistic error characterization model.The study is expected to unlock possible synergies with SWOT and support the comparison of SAR estimates to FF-SAR estimates obtained at a comparable along-track resolution.
- Published
- 2020
- Full Text
- View/download PDF
16. Satellite Altimetry over River Basins - Beyond Water Heights
- Author
-
Jérôme Benveniste and Philippa Berry
- Subjects
geography ,geography.geographical_feature_category ,Climatology ,Satellite altimetry ,Drainage basin ,Geology - Abstract
The unique contribution of satellite radar altimetry to river monitoring is well understood, with ‘ altimeter virtual gauge’ heights increasingly ingested into river basin models. However, altimeters gather a wealth of additional information. Waveform shapes reflect underlying topographic variation, surface composition and roughness, and distribution of surface water within the footprint. Backscatter measurements allow soil surface moisture under the satellite track to be determined, using DRy EArth ModelS (DREAMS) crafted from multi-mission altimeter data and ground truth. Initially developed over desert areas, DREAMs are now being built over river basins to extend the scope of altimeter soil moisture measurement.This paper investigates the potential contribution of these additional data to river basin analysis and modelling. The following key questions are addressed. 1) How useful are the data encoded in complex waveform shapes? 2) Can altimeter soil moisture estimates contribute to modelling in river basins?A series of example river basins were chosen in different topographic and climate situations, including the Amazon, Orinoco, Nile, Niger and Congo basins, and wetlands including the Okavango delta.This paper presents outcomes from analysis of multi-mission altimetry, with ERS-1/2, Envisat, Topex, Jason-1/2, Cryosat-2 and Sentinel-3A/B, plus a database of over 86,000 river and lake timeseries.The analysis outcomes demonstrate the value of altimeter soil surface moisture estimates, both as co-temporal and co-spatial data with inland water height measurements, and as an independent validation dataset to assess soil moisture estimates derived from other remote sensing techniques. The precise backscatter cross-calibration of altimeters on successive missions allows derivation of long soil moisture time series. The ability of nadir-pointing altimeters to penetrate vegetation canopy gives a unique perspective in rainforest areas, with information on underlying water height and extent as well as surface soil moisture. Waveform shape classification allows diverse information to be gleaned, particularly at the higher pulse repetition frequencies of the new generation of SAR Altimeters. In conclusion, satellite radar altimeters collect a wealth of information over river basins; this valuable resource is not yet fully exploited.
- Published
- 2020
- Full Text
- View/download PDF
17. The BRAT and GUT Couple: Broadview Radar Altimetry and GOCE User Toolboxes
- Author
-
Américo Ambrózio, Jérôme Benveniste, and Marco Restano
- Subjects
Radar altimetry ,Geology ,Remote sensing - Abstract
The scope of this work is to showcase the BRAT (Broadview Radar Altimetry Toolbox) and GUT (GOCE User Toolbox) toolboxes.The Broadview Radar Altimetry Toolbox (BRAT) is a collection of tools designed to facilitate the processing of radar altimetry data from all previous and current altimetry missions, including Sentinel-3A L1 and L2 products. A tutorial is included providing plenty of use cases on Geodesy & Geophysics, Oceanography, Coastal Zone, Atmosphere, Wind & Waves, Hydrology, Land, Ice and Climate, which can also be consulted in http://www.altimetry.info/radar-altimetry-tutorial/.BRAT's last version (4.2.1) was released in June 2018. Based on the community feedback, the front-end has been further improved and simplified whereas the capability to use BRAT in conjunction with MATLAB/IDL or C/C++/Python/Fortran, allowing users to obtain desired data bypassing the data-formatting hassle, remains unchanged. Several kinds of computations can be done within BRAT involving the combination of data fields, that can be saved for future uses, either by using embedded formulas including those from oceanographic altimetry, or by implementing ad-hoc Python modules created by users to meet their needs. BRAT can also be used to quickly visualise data, or to translate data into other formats, e.g. from NetCDF to raster images.The GOCE User Toolbox (GUT) is a compilation of tools for the use and the analysis of GOCE gravity field models. It facilitates using, viewing and post-processing GOCE L2 data and allows gravity field data, in conjunction and consistently with any other auxiliary data set, to be pre-processed by beginners in gravity field processing, for oceanographic and hydrologic as well as for solid earth applications at both regional and global scales. Hence, GUT facilitates the extensive use of data acquired during GRACE and GOCE missions.In the current version (3.2), GUT has been outfitted with a graphical user interface allowing users to visually program data processing workflows. Further enhancements aiming at facilitating the use of gradients, the anisotropic diffusive filtering, and the computation of Bouguer and isostatic gravity anomalies have been introduced. Packaged with GUT is also GUT's Variance/Covariance Matrix (VCM) tool, which enables non-experts to compute and study, with relative ease, the formal errors of quantities – such as geoid height, gravity anomaly/disturbance, radial gravity gradient, vertical deflections – that may be derived from the GOCE gravity models.On our continuous endeavour to provide better and more useful tools, we intend to integrate BRAT into SNAP (Sentinel Application Platform). This will allow our users to easily explore the synergies between both toolboxes. During 2020 we will start going from separate toolboxes to a single one.BRAT and GUT toolboxes can be freely downloaded, along with ancillary material, at https://earth.esa.int/brat and https://earth.esa.int/gut.
- Published
- 2020
- Full Text
- View/download PDF
18. River levels from multi mission altimetry, a statistical approach
- Author
-
Karina Nielsen, Elena Zakharova, Angelica Tarpanelli, Ole B. Andersen, and Jérôme Benveniste
- Subjects
Multi-mission ,Radar altimetry ,River water levels ,State-space model ,Soil Science ,Geology ,Computers in Earth Sciences - Abstract
Satellite altimetry is a key technique to measure water level change in continental water bodies. Altimetry-based water level time series of rivers are typically constructed at locations where the satellite ground tracks intersect the rivers, the so-called virtual stations. The relatively low sampling frequency (10–27 days) of the repeat missions may result in an under-sampling of the hydrological regime in rivers with sub-monthly to weekly events. We are currently in a unique position with more than a handful satellite altimetry missions simultaneously mapping the surface elevation of the Earth. In combination, these missions contain an unexploited potential to obtain a more detailed picture of the hydrological regime of many of the Earth's rivers. The task of combining water levels measured at different locations and/or by satellites with different orbits is however, challenging due to e.g. topography, intermission biases, variation in river morphology, and other unidentified causes.In this work, we present a new method to combine multi-mission altimetry-based water levels from a river reach. This will also enable the use of geodetic missions like CryoSat-2 and SARAL/AltiKa (after June 2016) in water level time series. To combine the data we set up a state-space model where the process part is a first-order autoregressive process. The observations as a function of time and distance along the reach are described as a sum of the water level at a given time scaled by a distance-dependent factor, the mean water level at the given distance, and an error term. The scale factor and the mean water level are modeled with spline functions. We employ the model for the six rivers Lena, Solimões, Mississippi, Danube, Po, and Red, which range in width from 3 km to a few hundred meters. For each river, we consider a reach of 200–300 km and apply water levels from the satellite altimetry missions CryoSat-2, Sentinel-3A/3B, and SARAL/AltiKa. The selected reach must have a continuous elevation profile and preferable no major tributaries, which might alter the hydrological regime considerably. The length of the reach is a compromise of ensuring enough data but not violating the aforementioned criteria.When validated against in situ data we find a root mean square error ranging from 0.34 m (Solimões River) to 2.53 m (Lena River) and a correlation ranging from 0.83 (Danube River) to 0.99 (Solimões River). These summary statistics are based on approximately 2000–3000 pairs of in situ and modeled water levels. We find the largest increase in detail for the reconstructed water levels for the Danube, Po, and Red Rivers, where the water level variations are under-sampled at the virtual stations. For the Po River, we can detect sub-weekly events with the model and for the Lena River, the spring flood related to ice and snowmelt is better captured when combining the data. An additional advantage of the approach is that the water level time series can be reconstructed at all locations along the considered reach.
- Published
- 2022
- Full Text
- View/download PDF
19. CryoSat-2 Full Bit Rate Level 1A processing and validation for inland water applications
- Author
-
Jérôme Benveniste, Stephen Birkinshaw, Marco Restano, A. Ambrózio, and Philip Moore
- Subjects
Atmospheric Science ,010504 meteorology & atmospheric sciences ,0208 environmental biotechnology ,Elevation ,Aerospace Engineering ,Astronomy and Astrophysics ,02 engineering and technology ,Slant range ,Geodesy ,01 natural sciences ,020801 environmental engineering ,Azimuth ,Geophysics ,Space and Planetary Science ,Range (statistics) ,Nadir ,General Earth and Planetary Sciences ,Waveform ,Satellite ,Ka band ,Geology ,0105 earth and related environmental sciences - Abstract
This study uniquely processes Cryosat-2 Full Bit Rate (FBR) SAR Level 1A data to recover inland water heights. The processing methodology involves an azimuthal Fast Fourier Transform (FFT) for the burst echo data followed by beam formation directed towards equi-angular ground points, stacking, slant range correction, multi-looking and finally retracking. It is seen that speckle in the burst echo data affects the recovered heights with precise heights recovered only through stacking and forming multi-look waveforms. Also investigated is the effect of different numbers of multi-looks in the stack to form the final waveform for retracking. A number of empirical retrackers are utilized over inland waters and compared against the oceanic SAMOSA2 and the OCOG/Threshold retrackers. Use of the SAMOSA2 retracker is shown to be inappropriate for inland waters. The use of 81 multi-looks from the stack centred on the nadir direction is shown to be preferred across Tonle Sap with the RMS of height residuals in the range 4–6 cm. External validation across Tonle Sap using gauge data shows that CryoSat-2 heights (RMS 42.1 cm) are comparable to OSTM (RMS 42.6 cm) despite the CryoSat-2 non-repeating orbit which precludes the use of a mean profile. Validation against gauge data at Kratie on the Mekong gives an RMS of 59.9 cm for Cryosat-2 against an RMS of 35.5 cm and 52.2 cm derived from Envisat. The CryoSat-2 results utilize an approximate correction for river slope as the river crossings span 5 km upstream to 80 km downstream of the gauge while the repeat pass crossings of Envisat are at 7 km and 43 km from the gauge. Validation of Amazon altimetric Surface Water Elevation (SWE) showed RMS agreement of 27.3 cm with Obidos gauge data and 56.3 cm at Manacapuru 650 km upstream of Obidos. Overall validations showed that CryoSat-2 altimetric river heights are more accurate than those from TOPEX/Poseidon, OSTM and Envisat for relatively large water bodies but less accurate than the Ka band SARAL (Satellite with ARgos and ALtiKa).
- Published
- 2018
- Full Text
- View/download PDF
20. ALES+: Adapting a homogenous ocean retracker for satellite altimetry to sea ice leads, coastal and inland waters
- Author
-
Stine Kildegaard Rose, Marcello Passaro, Jérôme Benveniste, Denise Dettmering, Eva Boergens, Francisco M. Calafat, and Ole Baltazar Andersen
- Subjects
Leads ,010504 meteorology & atmospheric sciences ,0211 other engineering and technologies ,Subwaveform retracker ,Soil Science ,02 engineering and technology ,Sea state ,01 natural sciences ,Latitude ,ALES ,Validation ,Arctic Ocean ,Sea ice ,Satellite altimetry ,Altimeter ,Computers in Earth Sciences ,Tide gauge ,Sea level ,021101 geological & geomatics engineering ,0105 earth and related environmental sciences ,Remote sensing ,geography ,geography.geographical_feature_category ,Retracking ,Geology ,Pelagic zone ,Water level ,Climatology ,Environmental science - Abstract
Water level from sea ice-covered oceans is particularly challenging to retrieve with satellite radar altimeters due to the different shapes assumed by the returned signal compared with the standard open ocean waveforms. Valid measurements are scarce in large areas of the Arctic and Antarctic Oceans, because sea level can only be estimated in the openings in the sea ice (leads and polynyas). Similar signal-related problems affect also measurements in coastal and inland waters. This study presents a fitting (also called retracking) strategy (ALES+) based on a subwaveform retracker that is able to adapt the fitting of the signal depending on the sea state and on the slope of its trailing edge. The algorithm modifies the existing Adaptive Leading Edge Subwaveform retracker originally designed for coastal waters, and is applied to Envisat and ERS-2 missions. The validation in a test area of the Arctic Ocean demonstrates that the presented strategy is more precise than the dedicated ocean and sea ice retrackers available in the mission products. It decreases the retracking open ocean noise by over 1 cm with respect to the standard ocean retracker and is more precise by over 1 cm with respect to the standard sea ice retracker used for fitting specular echoes. Compared to an existing open ocean altimetry dataset, the presented strategy increases the number of sea level retrievals in the sea ice-covered area and the correlation with a local tide gauge. Further tests against in-situ data show that also the quality of coastal retrievals increases compared to the standard ocean product in the last 6 km within the coast. ALES+ improves the sea level determination at high latitudes and is adapted to fit reflections from any water surface. If used in the open ocean and in the coastal zone, it improves the current official products based on ocean retrackers. First results in the inland waters show that the correlation between water heights from ALES+ and from in-situ measurement is always over 0.95.
- Published
- 2018
- Full Text
- View/download PDF
21. Satellite Altimetry Measurements of Sea Level in the Coastal Zone
- Author
-
Nicolas Picot, Lee-Lueng Fu, Matthias Raynal, Hélène Roinard, Florence Birol, Stefano Vignudelli, and Jérôme Benveniste
- Subjects
Synthetic aperture radar ,Data processing ,010504 meteorology & atmospheric sciences ,Mode (statistics) ,Storm surge ,010502 geochemistry & geophysics ,Coastal zone ,01 natural sciences ,law.invention ,Troposphere ,Geophysics ,Geochemistry and Petrology ,law ,Sea level ,Satellite altimetry ,Altimeter ,Radar ,Geology ,0105 earth and related environmental sciences ,Remote sensing - Abstract
Satellite radar altimetry provides a unique sea level data set that extends over more than 25 years back in time and that has an almost global coverage. However, when approaching the coasts, the extraction of correct sea level estimates is challenging due to corrupted waveforms and to errors in most of the corrections and in some auxiliary information used in the data processing. The development of methods dedicated to the improvement of altimeter data in the coastal zone dates back to the 1990s, but the major progress happened during the last decade thanks to progress in radar technology [e.g., synthetic aperture radar (SAR) mode and Ka-band frequency], improved waveform retracking algorithms, the availability of new/improved corrections (e.g., wet troposphere and tidal models) and processing workflows oriented to the coastal zone. Today, a set of techniques exists for the processing of coastal altimetry data, generally called “coastal altimetry.” They have been used to generate coastal altimetry products. Altimetry is now recognized as part of the integrated observing system devoted to coastal sea level monitoring. In this article, we review the recent technical advances in processing and the new technological capabilities of satellite radar altimetry in the coastal zone. We also illustrate the fast-growing use of coastal altimetry data sets in coastal sea level research and applications, as high-frequency (tides and storm surge) and long-term sea level change studies.
- Published
- 2019
- Full Text
- View/download PDF
22. Calibrating CryoSat-2 and Sentinel-3A Sea Surface Heights Along the German Coast
- Author
-
Jérôme Benveniste, Juergen Kusche, Bernd Uebbing, Salvatore Dinardo, Remko Scharroo, Luciana Fenoglio, Christopher Buchhaupt, and Matthias Becker
- Subjects
German ,Surface (mathematics) ,Earth ellipsoid ,language ,Absolute bias ,Calibration ,Tide gauge ,Altimeter ,Sea-surface height ,Geodesy ,language.human_language ,Geology - Abstract
By convention the absolute bias in sea surface height (SSH) is the difference between the altimeter and the in-situ reference SSH heights above the Earth ellipsoid. Both the absolute and the relative bias of the CryoSat-2 and Sentinel-3A missions are derived in this study at four stations along the German coasts.
- Published
- 2019
- Full Text
- View/download PDF
23. Improvement of the Arctic Ocean Bathymetry and Regional Tide Atlas: First Result on Evaluating Existing Arctic Ocean Bathymetric Models
- Author
-
D. Cotton, Adili Abulaitijiang, Mathilde Cancet, Jérôme Benveniste, and Ole Baltazar Andersen
- Subjects
Waves and shallow water ,Oceanography ,Arctic ,Atlas (topology) ,Satellite altimetry ,High resolution ,Ocean tide ,Bathymetry ,Geology ,The arctic - Abstract
The quality of existing bathymetry models for the Arctic Ocean is evaluated through visual comparison and the response of modelled tides. The high resolution ArcTide 2017 hydrodynamic model was used to evaluate the bathymetry in selected shallow water regions where tides are significant. The Southern Barents Sea was identified as a problematic region where inconsistencies were identified, resulting from methods used to patch in regional models and incorrect definitions of coastlines and depths. More generally, the investigation shows that careful verifications are needed to ensure seamless transitions between bathymetry datasets.
- Published
- 2019
- Full Text
- View/download PDF
24. Cross-calibrating ALES Envisat and CryoSat-2 Delay–Doppler: A coastal altimetry study in the Indonesian Seas
- Author
-
Bruno Manuel Lucas, Salvatore Dinardo, Paolo Cipollini, Graham D. Quartly, Jérôme Benveniste, Marcello Passaro, and Helen M. Snaith
- Subjects
Atmospheric Science ,010504 meteorology & atmospheric sciences ,Meteorology ,0211 other engineering and technologies ,Aerospace Engineering ,02 engineering and technology ,Sea state ,Monsoon ,01 natural sciences ,symbols.namesake ,Coastal altimetry ,SAR altimetry ,Indonesia ,Sea state bias ,CryoSat-2 ,Sea level ,Altimeter ,021101 geological & geomatics engineering ,0105 earth and related environmental sciences ,Ocean current ,Astronomy and Astrophysics ,ddc ,La Niña ,Geophysics ,Space and Planetary Science ,symbols ,General Earth and Planetary Sciences ,Significant wave height ,Kelvin wave ,Geology - Abstract
A regional cross-calibration between the first Delay-Doppler altimetry dataset from Cryosat-2 and a retracked Envisat dataset is here presented, in order to test the benefits of the Delay-Doppler processing and to expand the Envisat time series in the coastal ocean. The Indonesian Seas are chosen for the calibration, since the availability of altimetry data in this region is particularly beneficial due to the lack of in-situ measurements and its importance for global ocean circulation. The Envisat data in the region are retracked with the Adaptive Leading Edge Subwaveform (ALES) Retracker, which has been previously validated and applied successfully to coastal sea level research.The study demonstrates that CryoSat-2 is able to decrease the 1-Hz noise of sea level estimations by 0.3 cm within 50 km of the coast, when compared to the ALES-reprocessed Envisat dataset. It also shows that Envisat can be confidently used for detailed oceanographic research after the orbit change of October 2010. Cross-calibration at the crossover points indicates that in the region of study a sea state bias correction equal to 5% of the significant wave height is an acceptable approximation for Delay-Doppler altimetry.The analysis of the joint sea level time series reveals the geographic extent of the semiannual signal caused by Kelvin waves during the monsoon transitions, the larger amplitudes of the annual signal due to the Java Coastal Current and the impact of the strong La Niña event of 2010 on rising sea level trends.
- Published
- 2016
- Full Text
- View/download PDF
25. 11th COASTAL ALTIMETRY WORKSHOP FINAL REPORT
- Author
-
Marcello Passaro, Telespazio c, Paolo Cipollini, Unh, Cnr, o Esa-Ecsat, Serco c, David Cotton, Tum, Doug Vandemark, Jérôme Benveniste, Stefano Vignudelli, Marco Restano, o Esa-Esrin, Esa-Esrin, and SatOC
- Subjects
Climatology ,Altimeter ,Geology - Published
- 2018
- Full Text
- View/download PDF
26. Hydrological Applications of Satellite AltimetryRivers, Lakes, Man-Made Reservoirs, Inundated Areas
- Author
-
Stéphane Calmant, Frédéric Frappart, Karina Nielsen, Jérôme Benveniste, Jean-François Crétaux, and Fabrice Papa
- Subjects
business.industry ,Mode (statistics) ,Tracking system ,Tracking (particle physics) ,law.invention ,Troposphere ,Atmosphere ,law ,Satellite ,Altimeter ,Radar ,business ,Geology ,Remote sensing - Abstract
This chapter provides some basics of the interpretation of satellite altimetry measurements and explains how to use altimetry for hydrology. Satellite altimetry has been extensively used over the last two decades to calculate the water height variations over the Earth's lakes, rivers, reservoirs, and floodplains. Time series of altimetry-based water levels can be used to detect the signature of climate variability and extreme climatic events on the surface water storage. Echoes are acquired due to a tracking system placed on board the satellite known as "trackers". In the nominal tracking mode, the Jason-2 Poseidon-3 altimeter uses the "median tracker" concept, which again ensures the independence of shape pulse power weighting similar to the Free Model Tracker design on board Envisat. A dry tropospheric correction must be applied to the ranges in order to account for the delay of propagation of the radar pulse through the atmosphere.
- Published
- 2017
- Full Text
- View/download PDF
27. DEM generation using ASAR (ENVISAT) for addressing the lack of freshwater ecosystems management, Santa Cruz Island, Galapagos
- Author
-
Ghislain de Marsily, Jérôme Benveniste, Urs Wegmüller, Benoît Deffontaines, Sophie Violette, Noémi d'Ozouville, Centre de Géosciences (GEOSCIENCES), MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Géomatériaux et géologie de l'ingénieur (G2I), and Centre National de la Recherche Scientifique (CNRS)
- Subjects
010504 meteorology & atmospheric sciences ,Population ,0211 other engineering and technologies ,Soil Science ,02 engineering and technology ,Shuttle Radar Topography Mission ,Land cover ,01 natural sciences ,Freshwater ecosystem ,Water balance ,Satellite imagery ,14. Life underwater ,Computers in Earth Sciences ,Digital elevation model ,education ,021101 geological & geomatics engineering ,0105 earth and related environmental sciences ,Remote sensing ,geography ,education.field_of_study ,geography.geographical_feature_category ,[SDE.IE]Environmental Sciences/Environmental Engineering ,Geology ,15. Life on land ,6. Clean water ,13. Climate action ,Archipelago ,Environmental science - Abstract
International audience; Low relief oceanic islands often suffer from scarcity of freshwater resources. Remote sensing has proved to be an effective tool to generate valuable data for hydrological analysis and has improved the management of ecosystems and water. However, remotely sensed data are often tested over areas with existing validation databases and not always where the need is greatest. In this paper we address the need for topographical data to understand the hydrological system of Santa Cruz Island (Galapagos archipelago) so that management of freshwater ecosystems and resources can take place. No high resolution, high accuracy topographical data exist for Santa Cruz Island, and its growing population has created an urgent need for water resource management and protection of unique and pristine ecosystems. Inaccessible National Park land covers more than 97% of Galapagos territory, which makes the use of remote sensing methods indispensable. SRTM data was insufficient in terms of grid size (90 m) to carry out the needed data analysis. We used ASAR data (ENVISAT) in VV polarization image mode for Digital Elevation Model (DEM) generation, in order to extract drainage network, watersheds, and flow characteristics from a morpho-structural analysis. Results show the high potential of these data for both interferometric and radargrammetric generation methods. Although interferometry suffered from low coherence over highly vegetated areas, it showed high precision over the rest of the island. Radargrammetry gave consistent results over the entire island, and details were enhanced by integrating the 90 m SRTM data as an external DEM. Accuracy of the SRTM and the combined radargrammetric/SRTM DEM was similar, with the radargrammetric having a finer pixel-based resolution (20 m). Validation of the extracted drainage networks and watersheds was carried out using ground-based field observations and comparison to mapped river networks visually extracted from aerial photographs and high resolution (1 m) satellite imagery available on GoogleEarth(C). For the first time, watershed characteristics and flow paths were made available for an island of the Galapagos archipelago. Furthermore, the drainage network is shown to be strongly influenced by observed and extracted structural discontinuities. Having characterized freshwater flow, water balance calculations were carried out for Pelican Bay watershed, where urban areas, agricultural land and Galapagos National Park land are concomitant.
- Published
- 2008
- Full Text
- View/download PDF
28. Measuring Global Ocean Wave Skewness by Retracking RA-2EnvisatWaveforms
- Author
-
Jérôme Benveniste, Christine Gommenginger, Meric Srokosz, Peter Challenor, and Jesús Gómez-Enri
- Subjects
Atmospheric Science ,Ocean Engineering ,Geodesy ,Physics::Geophysics ,law.invention ,Radar altimeter ,law ,Skewness ,Wind wave ,Range (statistics) ,Waveform ,Satellite ,Altimeter ,Significant wave height ,Physics::Atmospheric and Oceanic Physics ,Geology ,Remote sensing - Abstract
For early satellite altimeters, the retrieval of geophysical information (e.g., range, significant wave height) from altimeter ocean waveforms was performed on board the satellite, but this was restricted by computational constraints that limited how much processing could be performed. Today, ground-based retracking of averaged waveforms transmitted to the earth is less restrictive, especially with respect to assumptions about the statistics of ocean waves. In this paper, a theoretical maximum likelihood estimation (MLE) ocean waveform retracker is applied tothe Envisat Radar Altimeter system (RA-2) 18-Hz averaged waveforms under both linear (Gaussian) and nonlinear ocean wave statistics assumptions, to determine whether ocean wave skewness can be sensibly retrieved from Envisat RA-2 waveforms. Results from the MLE retracker used in nonlinear mode provide the first estimates of global ocean wave skewness based on RA-2 Envisat averaged waveforms. These results show for the first time geographically coherent skewness fields and confirm the notion that large values of skewness occur primarily in regions of large significant wave height. Results from the MLE retracker run in linear and nonlinear modes are compared with each other and with the RA-2 Level 2 Sensor Geophysical Data Records (SGDR) products to evaluate the impact of retrieving skewness on other geophysical parameters. Good agreement is obtained between the linear and nonlinear MLE results for both significant wave height and epoch (range), except in areas of high-wave-height conditions.
- Published
- 2007
- Full Text
- View/download PDF
29. The German Bight: A validation of CryoSat-2 altimeter data in SAR mode
- Author
-
M. Dutour Sikiric, Jérôme Benveniste, Luciana Fenoglio-Marc, R. Weiss, Matthias Becker, Remko Scharroo, Salvatore Dinardo, Bruno Manuel Lucas, and Aron Roland
- Subjects
Synthetic aperture radar ,Atmospheric Science ,Accuracy and precision ,Reference ellipsoid ,Attenuation ,SAR altimetry ,In situ validation ,Sea level ,Significant wave height ,Wind speed ,Aerospace Engineering ,Astronomy and Astrophysics ,Sea-surface height ,Geophysics ,Space and Planetary Science ,General Earth and Planetary Sciences ,Altimeter ,Geology ,Remote sensing - Abstract
The retrieval of the three geophysical parameters – sea surface height above the reference ellipsoid (SSH), significant wave height (SWH) and wind speed at 10 m above the sea surface (U10) – is the main goal of satellite altimetry and of primary importance for climate research. The Synthetic Aperture Radar (SAR) altimetry is expected to provide improved precision and along-track resolution compared to the conventional low-resolution mode (LRM) radar altimetry. CryoSat-2 enables a quantitative comparison of SAR and Pseudo-LRM (PLRM) data derived respectively from a coherent and an incoherent processing of the same SAR echoes. In this paper we perform their cross-validation and validation against in situ and model data to derive precision and accuracy at 1 Hz in open ocean, at distances larger than 10 km from the coast. The analysis is performed in the German Bight during 2011 and 2012. Both the PLRM and the SAR scheme include waveform zero-padding and identical environmental, geophysical, and atmospheric attenuation corrections. A Look Up Table is additionally used in SAR to correct for approximations of the Point Target Response (PTR) applied in the retracking procedure. The regional cross-validation analysis proves the good consistency between PLRM and SAR data, with no bias and rms differences of 3 cm, 21 cm, and 0.26 m/s for SSH, SWH, and U10, respectively. The precision of SSH and SWH is higher in SAR than in PLRM (by a factor of 2), while the precision of U10 is 1.4 times better in PLRM than in SAR. At 2 m waveheight, the SAR precision is 0.9 cm for SSH, 6.6 cm for SWH. and 5.8 cm/s for U10. The in situ analysis shows that SSH and U10 have comparable accuracy in SAR and PLRM, while SWH has a significantly higher accuracy in SAR. With a maximum distance of 20 km between altimeter and in situ data, the minimum values obtained for their rms differences are 7 cm, 14 cm, and 1.3 m/s for SAR and 6 cm, 29 cm, and 1.4 m/s for PLRM.
- Published
- 2015
30. Theoretical Model of SAR Altimeter over Water Surfaces
- Author
-
David Cotton, Giulio Ruffini, Keith R. Raney, Jose Marquez, Meric Srokosz, Peter Challenor, Cristina Martin-Puig, and Jérôme Benveniste
- Subjects
Synthetic aperture radar ,symbols.namesake ,Meteorology ,symbols ,Altimeter ,Doppler effect ,Geology ,Remote sensing - Abstract
This paper provides a brief overview of the objectives and methodology of the ESA funded project SAMOSA: "Development of SAR Altimetry Studies and Applications over Ocean, Coastal zones and Inland waters", and mainly concentrates on the development of a theoretical model for the mean return echo from a synthetic aperture radar (SAR) altimeter (also know as a delay doppler altimeter or DDA) observations over water surfaces, in the same spirit set by conventional altimeters.
- Published
- 2008
- Full Text
- View/download PDF
31. The Coastal Zone: A Mission Target for Satellite Altimeters
- Author
-
Stefano Vignudelli, Jérôme Benveniste, and Paolo Cipollini
- Subjects
Pulse repetition frequency ,Synthetic aperture radar ,Meteorology ,Spacecraft ,business.industry ,Space-based radar ,Physics::Geophysics ,law.invention ,law ,Sea ice thickness ,General Earth and Planetary Sciences ,Satellite ,Altimeter ,Radar ,business ,Physics::Atmospheric and Oceanic Physics ,Geology ,Remote sensing - Abstract
Synthetic aperture radar (SAR) altimetry is rapidly becoming the most efficient way to measure small-scale changes in elevations of ice, land, and water surfaces as well as sea ice thickness. This new generation altimeter, first launched on board the CryoSat-2 satellite, fires 10 times more radar pulses per second than the previous generation and exploits the motion of the spacecraft to achieve a 20-fold increase in along-track resolution and twofold improvement in its accuracy.
- Published
- 2014
- Full Text
- View/download PDF
32. Special Issue on Ssatellite Altimetry over Land and Coastal Zones: Applications and Challenges
- Author
-
Cheinway Hwang, Yamin Dang, C. K. Shum, and Jérôme Benveniste
- Subjects
Atmospheric Science ,Satellite altimetry ,Earth and Planetary Sciences (miscellaneous) ,Oceanography ,Geology ,Remote sensing - Published
- 2008
- Full Text
- View/download PDF
33. Monitoring coastal zone changes from space
- Author
-
Philip L. Woodworth, Nicolas Champollion, G. Le Cozannet, A. A. Cazenave, and Jérôme Benveniste
- Subjects
Oceanography ,010504 meteorology & atmospheric sciences ,Coastal zone ,General Earth and Planetary Sciences ,010502 geochemistry & geophysics ,Space (mathematics) ,01 natural sciences ,Geology ,0105 earth and related environmental sciences - Abstract
The resilience of coastal communities depends on an integrated, worldwide coastal monitoring effort. Satellite observations provide valuable data on global to local scales.
34. Altimetry for the future: Building on 25 years of progress
- Author
-
Francesco d'Ovidio, Pierre Féménias, Sean Bruinsma, Felix Perosanz, Jerome Bouffard, S. Desai, Alexandre Couhert, Tatyana V. Belonenko, Sinead L. Farrell, Masafumi Kamachi, Rémi Laxenaire, Alexei V. Kouraev, M-Isabelle Pujol, Sandrine Mulet, Ciprian Spatar, Pablo Nilo Garcia, Loren Carrere, Vinca Rosmorduc, Michel Calzas, Marcello Passaro, Francesca Cirillo, Mathieu Hamon, Enrico Ser-Giacomi, Jida Wang, Raj Kumar, Stelios P. Mertikas, Luisella Giulicchi, Eric Jeansou, Benoit Legresy, Corinne Salaün, Donald Richardson, Martin Horwath, Sujit Basu, Rosemary Morrow, Jean-Damien Desjonquères, François Barlier, Cédric Brachet, Cécile Manfredi, Yves Morel, P. K. Gupta, Nicolas Taburet, Ferran Gibert, Anny Cazenave, Sung Yong Kim, Christopher Pearson, Lin Gilbert, Brian D. Dushaw, Johnny A. Johannessen, René Forsberg, Joël Dorandeu, Luciana Fenoglio, Denis Blumstein, C. K. Shum, Debadatta Swain, Stephan Paul, Valerii Vuglinskii, Marco Meloni, Hilary Wilson, Laurent Testut, Sebatian B. Simonsen, John Moyard, Fabien Léger, Andy Shaw, Abdolnabi Abdeh Kolahchi, Andrea Scozzari, Jan Even Øie Nilsen, Anna I. Bulczak, Valerio Poggiali, Rashmi Shah, John Wilkin, Steven Baker, Patrice Klein, Touati Benkouider, Claire Macintosh, Sarah T. Gille, Alexandre Guerin, Gilles Tavernier, Josh K. Willis, Jérôme Benveniste, Cedric Tourain, Emil V. Stanev, Praveen K. Thakur, Lionel Fichen, Céline Tison, Hans Ngodock, Shenfu Dong, Yuanyuan Jia, Sergey A. Lebedev, Nadia Ayoub, Constantin Mavrocordatos, Cédric H. David, Salvatore Dinardo, Yongjun Jia, Berguzar Oztunali Ozbahceci, Sara Fleury, Matthias Raynal, Yannice Faugère, Kathryn A. Kelly, Christian Schwatke, Craig Donlon, Etienne Poirier, Margaret Srinivasan, Remko Scharroo, Helena Antich, Barbara J. Ryan, Sergey V. Prants, Malcolm McMillan, Frédérique Rémy, David T. Sandwell, Annick Sylvestre-baron, Pascal Bonnefond, Fabien Blarel, Mounir Benkiran, Remi Tailleux, Marco Restano, Thierry Guinle, Stefano Vignudelli, Eric Leuliette, Madeleine Cahill, Ali Rami, Saulo Soares, Sophie Le Gac, Bàrbara Barceló-Llull, Claudia C. Carabajal, Veit Helm, Eva Alou-Font, Alejandro Blazquez, David Griffin, Habib B. Dieng, Prakash Chauhan, Albert Garcia-Mondejar, Christian Massari, Christopher J. Banks, Joana Fernandes, Blake A Walter, Nathalie Steunou, Karina Nielsen, Elena Zakharova, Bob Su, Stefania Camici, Frédérique Seyler, Fukai Peng, Denis L. Volkov, Wim Simons, Pieter Visser, Sophie Coutin-Faye, Lionel Gourdeau, Jesús Gómez-Enri, Andreas Schiller, Brian K. Arbic, Svetlana Karimova, Christine Gommenginger, Fanny Piras, Angélique Melet, Steve Coss, Meric Srokosz, Robert G. King, Frédéric Frappart, Fernando S. Paolo, Anna Klos, José Darrozes, Shannon Brown, Loreley Selene Lago, Susheel Adusumilli, Jay F. Shriver, Yves Quilfen, Martina Idžanović, Bernd Uebbing, Daniel Medeiros Moreira, Byron D. Tapley, R. Keith Raney, Frank G. Lemoine, Angelica Tarpanelli, Lara Díaz-Barroso, Jean-François Crétaux, Jean Tournadre, Tamlin M. Pavelsky, Sébastien Trilles, Carolina Nogueira Loddo, Léa Lasson, Stine Kildegaard Rose, Luc Lenain, Philip L. Woodworth, Marie-laure Frery, Saleh Abdalla, Bo Qiu, Stefan Hendricks, Mikhail A. Sokolovskiy, Antonio Sánchez-Román, Martin G. Scharffenberg, Per Knudsen, Andrew Shepherd, Michiel Otten, Sammie Buzzard, Philippe Schaeffer, Nicolas Picot, Luca Brocca, Michel Tsamados, Danielle De Staerke, Frederic Vivier, Nicole Bellefond, Jean-François Minster, Telmo Vieira, Brian D. Beckley, Stylianos Flampouris, Nadya Vinogradova Shiffer, Sergei Rudenko, Camille Noûs, Sabine Arnault, Frédéric Cyr, Liguang Jiang, Nicolas Bercher, Teresa K. Chereskin, Katsumi Takayama, Julienne Stroeve, Andrea Doglioli, Joanna Staneva, Stéphane Calmant, T. Moreau, Julien Le Sommer, David R. Donahue, Nadim Dayoub, Clement Ubelmann, Annie Richardson, Estelle Obligis, Laurent Brodeau, Catherine Prigent, Gérald Dibarboure, Simón Ruiz, LuAnne Thompson, Muriel Berge-Nguyen, Martina Ricko, Hugues Capdeville, Sammy Metref, Roshin P. Raj, Suchandra Aich Bhowmick, Andrey G. Kostianoy, Guillermina Paniagua, Mathilde Cancet, Eero Rinne, Sonia Ponce de León, Cédric Falco, Jianqiang Liu, Lucile Gaultier, Julia Gaudelli, Thierry Medina, Vadim Zinchenko, William Llovel, Eric P. Chassignet, Raymond Zaharia, Svetlana Y. Erofeeva, Lifeng Bao, Ole Baltazar Andersen, Emmanuel Cosme, Anna E. Hogg, Yohanes Budi Sulistioadi, Artur Gil, O. Laurain, Walter H. F. Smith, Ngan Tran, Pierre-Yves Le Traon, Laura Gomez-Navarro, Adrien Paris, Thomas W. K. Armitage, Alejandro Egido, Christopher Watson, João H. Bettencourt, Giuseppe Aulicino, Philippe Escudier, Fangfang Yao, Marco Fornari, Guoqi Han, Florent Lyard, Elisabeth Remy, Lotfi Aouf, Michele Scagliola, Martin Saraceno, Paolo Filippucci, Chao Wang, Zhongxiang Zhao, Juliette Lambin, Evan Mason, Ines Otosaka, Daniele Ciani, Raúl A. Guerrero, Ralf Bennartz, Michael Ablain, Fabrice Hernandez, Xiaoli Deng, John Lillibridge, Oscar Vergara, Marina Levy, Christine Drezen, Pierre Thibaut, Ronan Fablet, Bill Townsend, David Cotton, Sabrina Speich, Clara Lázaro, R. S. Nerem, Danièle Hauser, Pierre Exertier, Yuri Cotroneo, Henryk Dobslaw, Alessandro Di Bella, Karina von Schuckmann, Saskia Esselborn, Benjamin D. Gutknecht, Cecile Marie Margaretha Kittel, Rolf Koenig, Peter Bauer-Gottwein, Franck Borde, Alexander Braun, Christine Provost, Thomas Slater, Laiba Amarouche, Nikolai Maximenko, Raphael Schneider, Victor Zlotnicki, Jacques Verron, Sergei I. Badulin, Andreas Groh, Denise Dettmering, Mark R. Drinkwater, S. Cherchali, Marc Naeije, Fernando Niño, Alessio Domeneghetti, Kuo Hsin Tseng, François Boy, Rashmi Sharma, Laurent Soudarin, Peter A. E. M. Janssen, Robert Ricker, Frédéric Marin, Ananda Pascual, Eduard Makhoul Varona, Yongsheng Zhang, Pierrik Vuilleumier, Louise Sandberg Sørensen, Guillaume Dodet, Pascale Ferrage, Ramiro Ferrari, Yves Du Penhoat, Rodrigo Cauduro Dias de Paiva, S. Labroue, Camila Indira Artana, Joaquín Tintoré, David Brockley, Thierry Penduff, Paolo Cipollini, Augusto Getirana, Cecile Cheymol, Edward D. Zaron, Silvia Barbetta, Pierre Brasseur, Benoit Meyssignac, Matthias Becker, Kehan Yang, Juan Gabriel Fernández, Jean Paul Boy, European Centre for Medium-Range Weather Forecasts (ECMWF), Soil Conservation and Watershed Management Research Institute (SCWRMI), Agricultural Research, Education and Extension Organisation (AREEO ), Scripps Institution of Oceanography (SIO), University of California [San Diego] (UC San Diego), University of California-University of California, Space Applications Centre [Ahmedabad] (SAC), Indian Space Research Organisation (ISRO), Collecte Localisation Satellites (CLS), Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Centre National d'Études Spatiales [Toulouse] (CNES), National Space Institute [Lyngby] (DTU Space), Technical University of Denmark [Lyngby] (DTU), Institut Mediterrani d'Estudis Avancats (IMEDEA), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC)-Universidad de las Islas Baleares (UIB), Météo France, Department of Earth and Environmental Sciences [Ann Arbor], University of Michigan [Ann Arbor], University of Michigan System-University of Michigan System, Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Variabilité de l'Océan et de la Glace de mer (VOG), Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN), Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Institut de Recherche pour le Développement (IRD)-Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Institut de Recherche pour le Développement (IRD)-Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU), Mercator Océan, Société Civile CNRS Ifremer IRD Météo-France SHOM, Universita degli studi di Napoli 'Parthenope' [Napoli], Laboratoire d'études en Géophysique et océanographie spatiales (LEGOS), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Université Fédérale Toulouse Midi-Pyrénées-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), P.P. Shirshov Institute of Oceanology (SIO), Russian Academy of Sciences [Moscow] (RAS), Department of Space and Climate Physics [UCL London], Mullard Space Science Laboratory (MSSL), University College of London [London] (UCL)-University College of London [London] (UCL), National Oceanography Centre (NOC), Institute of Geodesy and Geophysics [Wuhan], Chinese Academy of Sciences [Wuhan Branch], Istituto di Ricerca per la Protezione Idrogeologica [Perugia] (IRPI), Consiglio Nazionale delle Ricerche [Roma] (CNR), Géoazur (GEOAZUR 7329), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud]), DTU Environment, Department of Environmental Engineering, Technische Universität Darmstadt (TU Darmstadt), Centre National d'Études Spatiales [Toulouse] (CNES), St Petersburg State University (SPbU), Agence Spatiale Algérienne = Algerian Space Agency (ASAL), Vanderbilt University [Nashville], European Space Research Institute (ESRIN), European Space Agency (ESA), Centre for Marine Technology and Ocean Engineering (CENTEC), Instituto Superior Técnico, Universidade Técnica de Lisboa (IST), Systèmes de Référence Temps Espace (SYRTE), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), European Space Research and Technology Centre (ESTEC), Ecole et Observatoire des Sciences de la Terre (EOST), Université de Strasbourg (UNISTRA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), INSU Division Technique de l'INSU [Site de Brest], Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut des Géosciences de l’Environnement (IGE), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Queen's University [Kingston, Canada], OceanNext, Géosciences Environnement Toulouse (GET), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Université Fédérale Toulouse Midi-Pyrénées-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Institute of Oceanology, Polish Academy of Sciences (IO-PAN), Polska Akademia Nauk = Polish Academy of Sciences (PAN), Centre for Polar Observation and Modelling (CPOM), Natural Environment Research Council (NERC), Australian Institute of Marine Science [Townsville] (AIMS Townsville), Australian Institute of Marine Science (AIMS), NOVELTIS [Sté], Science Systems and Applications, Inc. [Hampton] (SSAI), International Space Science Institute [Bern] (ISSI), Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University [Tallahassee] (FSU), Indian Institute of Remote Sensing (IIRS), Istituto di Science Marine (ISMAR ), Consiglio Nazionale delle Ricerche (CNR), European Centre for Space Applications and Telecommunications (ECSAT), Airbus Group [Germany], Airbus [France], School of Earth Sciences [Columbus], Ohio State University [Columbus] (OSU), Satellite Oceanographic Consultants Ltd (SATOC), Northwest Atlantic Fisheries Centre (NWAFC), Fisheries and Oceans Canada (DFO), Processus et interactions de fine échelle océanique (PROTEO), School of Engineering [Callaghan], University of Newcastle [Australia] (UoN), Deutsches Geodätisches Forschungsinstitut (DGFI-TUM), Technische Universität Munchen - Université Technique de Munich [Munich, Allemagne] (TUM), SOCIB Balearic Islands Coastal Ocean Observing and Forecasting System, German Research Centre for Geosciences - Helmholtz-Centre Potsdam (GFZ), Laboratoire d'Océanographie Physique et Spatiale (LOPS), Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS), Institut méditerranéen d'océanologie (MIO), Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Department of Civil Chemical Environmental and Materials Engineering [Bologna] (DICAM), University of Bologna, NOAA Office of Satellite and Product Operations (OSPO), NOAA National Environmental Satellite, Data, and Information Service (NESDIS), National Oceanic and Atmospheric Administration (NOAA)-National Oceanic and Atmospheric Administration (NOAA), NOAA Atlantic Oceanographic and Meteorological Laboratory (AOML), National Oceanic and Atmospheric Administration (NOAA), Oregon State University (OSU), IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT), Département Mathematical and Electrical Engineering (IMT Atlantique - MEE), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Equipe Observations Signal & Environnement (Lab-STICC_OSE), Laboratoire des sciences et techniques de l'information, de la communication et de la connaissance (Lab-STICC), École Nationale d'Ingénieurs de Brest (ENIB)-Université de Bretagne Sud (UBS)-Université de Brest (UBO)-École Nationale Supérieure de Techniques Avancées Bretagne (ENSTA Bretagne)-Institut Mines-Télécom [Paris] (IMT)-Centre National de la Recherche Scientifique (CNRS)-Université Bretagne Loire (UBL)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-École Nationale d'Ingénieurs de Brest (ENIB)-Université de Bretagne Sud (UBS)-Université de Brest (UBO)-École Nationale Supérieure de Techniques Avancées Bretagne (ENSTA Bretagne)-Institut Mines-Télécom [Paris] (IMT)-Centre National de la Recherche Scientifique (CNRS)-Université Bretagne Loire (UBL)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Université de Perpignan Via Domitia (UPVD), Department of Geographical Sciences [College Park], University of Maryland [College Park], University of Maryland System-University of Maryland System, Institut für Geodäsie und Geoinformationstechnik, Technische Universität Berlin (TU), Interdisciplinary Centre of Marine and Environmental Research [Matosinhos, Portugal] (CIIMAR), Universidade do Porto, Centro de Investigaciones del Mar y la Atmósfera (CIMA), Facultad de Ciencias Exactas y Naturales [Buenos Aires] (FCEyN), Universidad de Buenos Aires [Buenos Aires] (UBA)-Universidad de Buenos Aires [Buenos Aires] (UBA)-Consejo Nacional de Investigaciones Científicas y Técnicas [Buenos Aires] (CONICET), Institut für Planetare Geodäsie, Lohrmann-Observatorium, Technische Universität Dresden = Dresden University of Technology (TU Dresden), Universidad Nacional de Mar del Plata [Mar del Plata] (UNMdP), SPACE - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Environmental Fluid Mechanics Laboratory [Daejeon] (EFML), Korea Advanced Institute of Science and Technology (KAIST), Ecole Normale Supérieure Paris-Saclay (ENS Paris Saclay), Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA (UMR_8112)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY), Austral, Boréal et Carbone (ABC), Kansas State University, University of North Carolina [Chapel Hill] (UNC), University of North Carolina System (UNC), University of Tasmania [Hobart, Australia] (UTAS), Rutgers, The State University of New Jersey [New Brunswick] (RU), Rutgers University System (Rutgers), Institute of Arctic and Alpine Research (INSTAAR), University of Colorado [Boulder], Water Problems Institute (WPI), the Russian Academy of Sciences [Moscow, Russia] (RAS), Portland State University [Portland] (PSU), Applied Physics Laboratory [Seattle] (APL-UW), University of Washington [Seattle], Scripps Institution of Oceanography (SIO - UC San Diego), University of California (UC)-University of California (UC), Danmarks Tekniske Universitet = Technical University of Denmark (DTU), Météo-France Direction Interrégionale Sud-Est (DIRSE), Météo-France, Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER), Università degli Studi di Napoli 'Parthenope' = University of Naples (PARTHENOPE), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), National Research Council of Italy | Consiglio Nazionale delle Ricerche (CNR), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud]), Technische Universität Darmstadt - Technical University of Darmstadt (TU Darmstadt), Agence Spatiale Européenne = European Space Agency (ESA), University of Newcastle [Callaghan, Australia] (UoN), Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS), University of Bologna/Università di Bologna, IMT Atlantique (IMT Atlantique), École Nationale d'Ingénieurs de Brest (ENIB)-Université de Bretagne Sud (UBS)-Université de Brest (UBO)-École Nationale Supérieure de Techniques Avancées Bretagne (ENSTA Bretagne)-Institut Mines-Télécom [Paris] (IMT)-Centre National de la Recherche Scientifique (CNRS)-Université Bretagne Loire (UBL)-IMT Atlantique (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-École Nationale d'Ingénieurs de Brest (ENIB)-Université de Bretagne Sud (UBS)-Université de Brest (UBO)-École Nationale Supérieure de Techniques Avancées Bretagne (ENSTA Bretagne)-Institut Mines-Télécom [Paris] (IMT)-Centre National de la Recherche Scientifique (CNRS)-Université Bretagne Loire (UBL)-IMT Atlantique (IMT Atlantique), Technical University of Berlin / Technische Universität Berlin (TU), Universidade do Porto = University of Porto, Consejo Nacional de Investigaciones Científicas y Técnicas [Buenos Aires] (CONICET)-Facultad de Ciencias Exactas y Naturales [Buenos Aires] (FCEyN), Universidad de Buenos Aires [Buenos Aires] (UBA)-Universidad de Buenos Aires [Buenos Aires] (UBA), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique et Atmosphères = Laboratory for Studies of Radiation and Matter in Astrophysics and Atmospheres (LERMA), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY), Group on Earth Observations (GEO), Institute of Arctic Alpine Research [University of Colorado Boulder] (INSTAAR), Department of Water Resources, UT-I-ITC-WCC, Faculty of Geo-Information Science and Earth Observation, Abdalla S., Abdeh Kolahchi A., Ablain M., Adusumilli S., Aich Bhowmick S., Alou-Font E., Amarouche L., Andersen O.B., Antich H., Aouf L., Arbic B., Armitage T., Arnault S., Artana C., Aulicino G., Ayoub N., Badulin S., Baker S., Banks C., Bao L., Barbetta S., Barcelo-Llull B., Barlier F., Basu S., Bauer-Gottwein P., Becker M., Beckley B., Bellefond N., Belonenko T., Benkiran M., Benkouider T., Bennartz R., Benveniste J., Bercher N., Berge-Nguyen M., Bettencourt J., Blarel F., Blazquez A., Blumstein D., Bonnefond P., Borde F., Bouffard J., Boy F., Boy J.-P., Brachet C., Brasseur P., Braun A., Brocca L., Brockley D., Brodeau L., Brown S., Bruinsma S., Bulczak A., Buzzard S., Cahill M., Calmant S., Calzas M., Camici S., Cancet M., Capdeville H., Carabajal C.C., Carrere L., Cazenave A., Chassignet E.P., Chauhan P., Cherchali S., Chereskin T., Cheymol C., Ciani D., Cipollini P., Cirillo F., Cosme E., Coss S., Cotroneo Y., Cotton D., Couhert A., Coutin-Faye S., Cretaux J.-F., Cyr F., d'Ovidio F., Darrozes J., David C., Dayoub N., De Staerke D., Deng X., Desai S., Desjonqueres J.-D., Dettmering D., Di Bella A., Diaz-Barroso L., Dibarboure G., Dieng H.B., Dinardo S., Dobslaw H., Dodet G., Doglioli A., Domeneghetti A., Donahue D., Dong S., Donlon C., Dorandeu J., Drezen C., Drinkwater M., Du Penhoat Y., Dushaw B., Egido A., Erofeeva S., Escudier P., Esselborn S., Exertier P., Fablet R., Falco C., Farrell S.L., Faugere Y., Femenias P., Fenoglio L., Fernandes J., Fernandez J.G., Ferrage P., Ferrari R., Fichen L., Filippucci P., Flampouris S., Fleury S., Fornari M., Forsberg R., Frappart F., Frery M.-L., Garcia P., Garcia-Mondejar A., Gaudelli J., Gaultier L., Getirana A., Gibert F., Gil A., Gilbert L., Gille S., Giulicchi L., Gomez-Enri J., Gomez-Navarro L., Gommenginger C., Gourdeau L., Griffin D., Groh A., Guerin A., Guerrero R., Guinle T., Gupta P., Gutknecht B.D., Hamon M., Han G., Hauser D., Helm V., Hendricks S., Hernandez F., Hogg A., Horwath M., Idzanovic M., Janssen P., Jeansou E., Jia Y., Jiang L., Johannessen J.A., Kamachi M., Karimova S., Kelly K., Kim S.Y., King R., Kittel C.M.M., Klein P., Klos A., Knudsen P., Koenig R., Kostianoy A., Kouraev A., Kumar R., Labroue S., Lago L.S., Lambin J., Lasson L., Laurain O., Laxenaire R., Lazaro C., Le Gac S., Le Sommer J., Le Traon P.-Y., Lebedev S., Leger F., Legresy B., Lemoine F., Lenain L., Leuliette E., Levy M., Lillibridge J., Liu J., Llovel W., Lyard F., Macintosh C., Makhoul Varona E., Manfredi C., Marin F., Mason E., Massari C., Mavrocordatos C., Maximenko N., McMillan M., Medina T., Melet A., Meloni M., Mertikas S., Metref S., Meyssignac B., Minster J.-F., Moreau T., Moreira D., Morel Y., Morrow R., Moyard J., Mulet S., Naeije M., Nerem R.S., Ngodock H., Nielsen K., Nilsen J.E.O., Nino F., Nogueira Loddo C., Nous C., Obligis E., Otosaka I., Otten M., Oztunali Ozbahceci B., P. Raj R., Paiva R., Paniagua G., Paolo F., Paris A., Pascual A., Passaro M., Paul S., Pavelsky T., Pearson C., Penduff T., Peng F., Perosanz F., Picot N., Piras F., Poggiali V., Poirier E., Ponce de Leon S., Prants S., Prigent C., Provost C., Pujol M.-I., Qiu B., Quilfen Y., Rami A., Raney R.K., Raynal M., Remy E., Remy F., Restano M., Richardson A., Richardson D., Ricker R., Ricko M., Rinne E., Rose S.K., Rosmorduc V., Rudenko S., Ruiz S., Ryan B.J., Salaun C., Sanchez-Roman A., Sandberg Sorensen L., Sandwell D., Saraceno M., Scagliola M., Schaeffer P., Scharffenberg M.G., Scharroo R., Schiller A., Schneider R., Schwatke C., Scozzari A., Ser-giacomi E., Seyler F., Shah R., Sharma R., Shaw A., Shepherd A., Shriver J., Shum C.K., Simons W., Simonsen S.B., Slater T., Smith W., Soares S., Sokolovskiy M., Soudarin L., Spatar C., Speich S., Srinivasan M., Srokosz M., Stanev E., Staneva J., Steunou N., Stroeve J., Su B., Sulistioadi Y.B., Swain D., Sylvestre-baron A., Taburet N., Tailleux R., Takayama K., Tapley B., Tarpanelli A., Tavernier G., Testut L., Thakur P.K., Thibaut P., Thompson L., Tintore J., Tison C., Tourain C., Tournadre J., Townsend B., Tran N., Trilles S., Tsamados M., Tseng K.-H., Ubelmann C., Uebbing B., Vergara O., Verron J., Vieira T., Vignudelli S., Vinogradova Shiffer N., Visser P., Vivier F., Volkov D., von Schuckmann K., Vuglinskii V., Vuilleumier P., Walter B., Wang J., Wang C., Watson C., Wilkin J., Willis J., Wilson H., Woodworth P., Yang K., Yao F., Zaharia R., Zakharova E., Zaron E.D., Zhang Y., Zhao Z., Zinchenko V., Zlotnicki V., Technical University of Munich (TUM), European Space Agency, National Aeronautics and Space Administration (US), Centre National D'Etudes Spatiales (France), Laboratoire des Écoulements Géophysiques et Industriels [Grenoble] (LEGI), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de Recherche pour le Développement (IRD)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA), Sorbonne Université (SU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Lab-STICC_IMTA_CID_TOMS, Université de Brest (UBO)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-École Nationale Supérieure de Techniques Avancées Bretagne (ENSTA Bretagne)-Université Bretagne Loire (UBL)-Centre National de la Recherche Scientifique (CNRS)-Université de Bretagne Sud (UBS)-École Nationale d'Ingénieurs de Brest (ENIB)-Université de Brest (UBO)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-École Nationale Supérieure de Techniques Avancées Bretagne (ENSTA Bretagne)-Université Bretagne Loire (UBL)-Centre National de la Recherche Scientifique (CNRS)-Université de Bretagne Sud (UBS)-École Nationale d'Ingénieurs de Brest (ENIB), Centre National de la Recherche Scientifique (CNRS)-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), and Université Fédérale Toulouse Midi-Pyrénées-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)
- Subjects
Cryospheric science ,Atmospheric Science ,Earth observation ,010504 meteorology & atmospheric sciences ,UT-Hybrid-D ,Oceanography ,01 natural sciences ,Cryospheric sciences ,SDG 13 - Climate Action ,Aerospace & Aeronautics ,Cryosphere ,Satellite altimetry ,010303 astronomy & astrophysics ,ComputingMilieux_MISCELLANEOUS ,Geodetic datum ,ddc ,Ocean surface topography ,Geophysics ,Section (archaeology) ,[SDE]Environmental Sciences ,Astronomical and Space Sciences ,Geology ,Altimetria espacial ,Coastal oceanography ,Meteorology ,Hidrologia ,Aerospace Engineering ,ITC-HYBRID ,0103 physical sciences ,Geoid ,Oceonografia ,Sea level ,SDG 14 - Life Below Water ,14. Life underwater ,Altimeter ,Criosfera ,Life Below Water ,[SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography ,0105 earth and related environmental sciences ,Mechanical Engineering ,Hydrology ,Astronomy and Astrophysics ,Climate Action ,Earth system science ,[SDU]Sciences of the Universe [physics] ,13. Climate action ,Space and Planetary Science ,ITC-ISI-JOURNAL-ARTICLE ,General Earth and Planetary Sciences - Abstract
International Altimetry Team., In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the “Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion., At the forefront of this support, we must obviously mention the space agencies CNES, ESA and NASA which have played and still play a decisive role in the development and launch of several prominent altimetry missions from the outset. Other agencies such as DLR, EUMETSAT, ISRO, NOAA, NSOAS and organizations such as CMEMS, also contribute significantly to developments in all forms of altimetry.
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.