10 results on '"Alvarado, Guillermo E."'
Search Results
2. Geology, Tectonics, and Geomorphology of Costa Rica: A Natural History Approach,,
- Author
-
Alvarado, Guillermo E., author and Cárdenes, Guaria, author
- Published
- 2016
- Full Text
- View/download PDF
3. Pérdidas Humanas y Económicas Causadas por el Vulcanismo en Costa Rica entre 1953 y 2005
- Author
-
Aguilar, Irene and Alvarado, Guillermo E.
- Subjects
QE1-996.5 ,Damage ,lahars ,Daños ,pérdidas económicas ,fatalities from volcanic activity ,economic losses ,lluvia ácida ,lahares ,Geology ,muerte por actividad volcánica ,acid rain - Abstract
Se presenta por primera vez una aproximación integrada de los efectos de las erupciones volcánicas en el periodo comprendido entre los años 1953 y el 2005. El detalle de los daños en (puentes, casas, ferrocarril, fábricas), las pérdidas económicas (agricultura, ganadería, suministro de agua potable), interrupción de las actividades, pérdidas de vidas humanas y las inversiones (donaciones, medidas paliativas), se presenta en los correspondientes cuadros, los que se centran en los desastres y efectos económicos, sin embargo los efectos sociológicos y psicológicos no fueron evaluados. Tres emergencias nacionales se han producido, una debido a la erupción del Irazú en 1963-1965, la otra con el Arenal en 1968 y la del volcán Poás en 1990. Pero también varias crisis volcánicas ocurrieron en otros volcanes como el Poás (1953-1955, 1989-1994), Rincón de la Vieja (1967,1991, 1995 y 1998) y de nuevo en Arenal (1975, 1988 y 2000), que produjo las pérdidas económicas debidas a la lluvia acida y/o lahares, otras personas murieron debido a depósitos de flujos piroclásticos. La actividad volcánica es la responsable de al menos 48,7 millones dólares en el último siglo, cantidad que será necesaria escalar en un futuro estudio. En el presente siglo, el daño por la lluvia ácida es de más de $200 mil. Por el momento, se tiene certeza que 103 personas fueron muertas por la actividad volcánica en el siglo XX; no hay informes adicionales de muertes o personas heridas desde 1700. Este documento es la base para un trabajo futuro más centrado en la evaluación socioeconómica, el análisis del riesgo y su proyección hacia el futuro. Si una nueva erupción similar a la del Irazú en 1963-1965 o del Arenal en 1968, sucediera durante el presente siglo, las pérdidas económicas serán significativamente mayores que las anteriores. An integrated approximation of the impact of volcanic eruptions in the period between the years 1953 and 2005 in Costa Rica is presented for the first time. The detailled damage (bridges, houses, railways, factories), economic losses (agriculture, livestock, drinking water), disruption of activities, loss of life and investments (donations, mitigation measurements), is given. This focuses on the disasters and economic effects, but the sociological and psychological effects were not assessed. Two national emergencies occurred with the eruption of Irazú in 1963-1965 and Arenal in 1968, and several volcanic crises occurred at other volcanoes including Poás (1953-1955, 1989-1994), Rincón de la Vieja (1967, 1991, 1995 and 1998), and again in Arenal (1975, 1988 and 2000), which produced economic losses due acid rain and/or lahars, and loss of life resulting from pyroclastic flows. Volcanic activity is responsible for a loss of at least $48.7 millionin the last century, quantity that is necessary scalar in a future study. In this century, the damage due acid rain is more than $200 million. It is certain that 103 people were killed by volcanic activity in the 20th century, and there are no additional reports of deaths or injuries since 1700. This paper is the basis for future work focused on the socio-economic evaluation, risk analyses and future projections. If a new eruption similar to those of Irazú in 1963-1965 or Arenal in 1968 were to happen during the present century, the economic losses can be expected to be larger than previous ones.
- Published
- 2014
4. Marco geológico y tectónico de la Isla del Coco y la región marítima circunvecina, Costa Rica
- Author
-
Rojas, Wilfredo and Alvarado, Guillermo E.
- Subjects
Costa Rica ,Cordillera Volcánica del Coco ,geology ,Cocos Ridge ,Cocos Island ,peligros geológicos ,seismo-tectonics ,Isla del Coco ,maremotos ,sismotectónica ,geodynamic hazards ,tsunamis ,geología - Abstract
La Isla del Coco es la única isla oceánica y el único afloramiento subaéreo de la Cordillera Volcánica del Coco, el rasgo geográfico y geológico más extenso en aguas territoriales costarricenses. Desde el punto de vista geológico, está conformada por rocas volcánicas, predominantemente coladas de lavas basálticas y traquíticas en menor cantidad, con rocas piroclásticas y epiclásticas subordinadas. Posee suelos, coluvios y depósitos de playas (arenas y cantos) superficiales; su topografía es muy variable pero predomina el relieve quebrado y rugoso. La Isla del Coco es la parte emergida de un volcán submarino de evolución compleja, desarrollado a partir y durante el Pleistoceno Inferior (entre 2.2 y 1.5 millones de años, Ma), producto de una anomalía térmica en el manto a través de varias fisuras, que originaron varios alineamientos de volcanes submarinos. La Isla del Coco se encuentra en un estadio de erosión activo, y sus arcos y plataformas sumergidas (90-110m y 183m) son probablemente el producto de una erosión subaérea durante las dos últimas máximas glaciaciones, combinados quizás con la subsidencia debida al enfriamiento del escudo volcánico y de la corteza oceánica. Al ser la isla geológicamente joven, posee importantes implicaciones para la comprensión de la evolución y el endemismo de su biodiversidad. Las amenazas en la geodinámica principales identificadas son los deslizamientos, los tsunamis y, en menor grado, la sismicidad, poco frecuente y con magnitudes moderadas (≤ 5.8 Mw hasta la fecha) dentro de un radio de alrededor de 300km, predominantemente asociada con fallas dextrales de rumbo N-S. Los pocos datos obtenidos hasta el momento indican que hay un cierto grado de actividad sísmica en los alrededores de la Isla del Coco, relacionados con las fallas locales. Algunos pequeños tsunamis históricos y prehistóricos han afectado a la Isla del Coco y los sismos así como la precipitación pluvial elevada han generado deslizamientos. La licuefacción está restringida a las dos playas arenosas (bahías Chatham y Wafer). The Isla del Coco (also known as Cocos Island), in the Eastern Pacific Ocean, has a rough topography, an area of 24km², and is the only sub-aerial topographic height of the summit of a volcano located in the margin of the Cordillera Volcánica del Coco (also known as Cocos Ridge). The Cocos Ridge is a well defined linear bathymetric height, issued from the active volcanism of the Galápagos hotspot during the last 15 million years (Ma); it is the largest geographic feature of Costa Rica, as a volcanic range of 780km long in its territorial seawaters. Isla del Coco is part of a submarine shield volcano of complex evolution, which erupted several times above sea level during the Lower Pleistocene (2.2-1.5Ma). The island and other seamounts are the result from a mantle thermal anomaly that erupted through volcano-tectonic fissures in the oceanic crust. The rocks consist mainly of alkali basaltic lava flows (aa, pahoehoe, blocky lavas) and dikes, minor trachyte lava flows, volcanic domes and dikes, with subordinate pyroclastic and epivolcanic rocks. Colluvial, soils and local littoral deposits such as sand and gravel beaches are also present. The island has a juvenile erosive stadium, but their submarine erosive arcs and platforms (90-110m and 183m depth) are probably the result of the erosion occurred during last two glacial maxima, besides slow subsidence events of the island due the thermal cooling of the volcanic shield and its oceanic crust. The most important current external geodynamic hazards are landslides, tsunamis and rare seismic events, Mw ≤ 5.8 in a 300km radio associated to N-S right lateral strike slip faults. However, the limited seismic data available, and geomorphological alignments, indicates that there is some seismic activity related to local faults oriented N-S, ENE and in a lesser extend NW trend. Seismicity and rainfall have triggered landslides; liquefaction is restricted to Chatham and Wafer bays’ beaches. Moderate historical and prehistorical tsunamis were related to regional seismic events. The relative young age of Isla del Coco makes it an interesting place to study the evolution and migration of species, and their genetic features. More detailed studies related to tephrostratigraphy, neotectonics, marine geomorphology, evolution of seamounts, lava flow morphology, and submarine hydrothermal activity, are still necessary to understand the expression of internal geodynamic processes in this region.
- Published
- 2012
5. PEPERITAS EN COSTA RICA.
- Author
-
Soto, Daniel and Alvarado, Guillermo E.
- Subjects
- *
SEDIMENTARY rocks , *GEOLOGY , *BRECCIA , *VOLCANISM , *SEDIMENTATION & deposition , *ROCKS , *CLASSIFICATION - Abstract
This paper describes petrographically and genetically, a number of peperites, as examples of spatial and temporal coexistence of magmatism and sedimentation in Costa Rica. The cases are presented in basic igneous complexes (ophiolites), mixtures varying from incomplete (megablocks of radiolarite with diabase in the Nicoya Complex) to complete mixes in various stages of Maastrichtian-Paleocene (Golfito Formation) or Paleocene pelagic limestones with basalts (Quepos Subcomplex or Tulín Formation) to form brechoid and pillowed peperites. Within the Oligo-Miocene arc, there are examples extended along the Talamanca range and its foothills, as well as Sarapiquí's plains represented for brechoid and bulbous (fluidal) peperites in latiandesitic lavas (Pacacua Formation) or brechoid peperitic pipes in ignimbrites (Mata de Limón Member) or possible brechoid peperites in lavas in the Crucitas mining prospect (Cureña Formation), or simple brechoid peperites in andesitic flow (Pacacua Formation, in Talamanca) or as hydroclastic breccias with fragments of dacitic composition in lava flow deposits of Carbonal Guanacaste, just between the beaches Cabuyal and Naranjo. All these rocks represented proximal equivalents of the explosive, effusive and subvolcanic volcanism (endogenous domes and criptodomes) and his concomitance with the fluvial sedimentation. In Quaternary period, we have a sample in the base of Tiribí Formation in contact with Palmares Lacustrine. Also this paper included possible and potential cases. It hopes that the description and interpretation of this type of rocks helps to its identification in other regions of Costa Rica and Central America in general, as well as a potential source for the exploration of valuable metals [ABSTRACT FROM AUTHOR]
- Published
- 2012
6. SÍNTESIS GEOCRONOLÓGICA DEL MAGMATISMO, METAMORFISMO Y METALOGENIA DE COSTA RICA, AMÉRICA CENTRAL.
- Author
-
Alvarado, Guillermo E. and Gans, Phillipe B.
- Subjects
- *
GEOLOGY , *VOLCANIC ash, tuff, etc. , *VOLCANOES , *MAGMATISM , *PLATE tectonics - Abstract
A comprehensive compilation of 651 (since 1968) radiometric ages determinations (415 40Ar/39Ar, 211 K/Ar, 5 U/Th, 4 Rb/Sr, 2 U/Pb, and 13 fission track thermochronology ages using zircon) provides a complete picture of the igneous stratigraphy of Costa Rica, and information about the age of the major metamorphic and metalogenic events in the region. Igneous rocks of Late Jurassic to Middle Eocene age (~ 160 to ~ 41 Ma), mainly accreted ophiolites. At the beginning of Campanian time (~ 71 Ma), the actual subduction zone was established, represented by volcanosedimentary rocks of basic to felsic composition. However, voluminous subalkaline, primary volcanic rocks appeared only after ~ 29 Ma. Intrusive to hypabyssal granitic to gabboic plutons, stocks, equivalent dykes and sills, are widely exposed in the Talamanca range (~ 12.4 - 7.8 Ma), Cerros de Escazú (~ 6.0 - 5.9 Ma), and Fila Costeña (~ 18.3 - 16.8 and ~ 14.8 - 11.1 Ma), Tapantí-Montes del Aguacate-Carpintera (~ 4.2 - 2.2 Ma) and Guacimal (~ 6.4 - 5.2 Ma). Arc rocks between 29 and 11 Ma are known in the San Carlos plains and in southern Costa Rica. The location and age of the igneous rocks indicated that there was a 20°counterclockwise rotation of the arc (termed as Proto-Volcanic Front) between 15 and 8 Ma, with a pole of rotation centered on southern Costa Rica. This rotation is attributed to deformation in the overriding plate (shortening in the south coeval with extension in the NW), accompanied by trench retreat in the south. At ~ 3.45 Ma arc-related volcanism shut off in southern part of the region, but local acid-adakite volcanism persisted in the Talamanca range (4.2 - 0.95 Ma) due to the subduction of the Cocos Ridge. The Paleo-Volcanic Front is represented by arc-related rocks (8 - 3.5 Ma) along the length of Costa Rica, parallel to but in front of the modern arc. This activity was followed by the Monteverde (2.1 - 1.1 Ma) andesitic/basaltic effusive event, which progressively retreated to the NE. Thus, the Neo-Volcanic Front was established between 2.1 and the present, in which the modern volcanoes grew mainly during the last 0,6 Ma. In general, modern volcanoes represent three volcanic episodes: ancestral cone/shield building at ~ 1,61 - 0,85 Ma (Proto-Cordillera), overlapping in part with Monteverde volcanism; a major constructive event at ~ 0,74 - ~ 0,2 Ma (Paleo-Cordillera), and a relatively small but still active volcanism at 0,25 - 0 Ma (Neo-Cordillera). Submarine volcanism in the Pacific is represented by the Fisher Ridge (30.0 and 19.2 Ma), the Cocos Ridge (14,5 – 0,6 Ma), including the sub-aerial volcanism of Cocos Island (2,2 - 1,5 Ma). The major magmatic, metamorphic and metallogenic events are clearly related to major geotectonic events, including regional unconformities, at Upper Cretaceous (~ 82 Ma), Middle Eocene (~ 45 Ma) and Upper Miocene (~ 8 Ma). [ABSTRACT FROM AUTHOR]
- Published
- 2012
7. CARACTERIZACIÓN GEOQUÍMICA Y PETROGRÁFICA DE LAS UNIDADES GEOLÓGICAS DEL MACIZO DEL VOLCÁN POÁS, COSTA RICA.
- Author
-
Ruiz, Pablo, Gazel, Esteban, Alvarado, Guillermo E., Carr, Michael J., and Soto, Gerardo J.
- Subjects
- *
VOLCANOES , *VOLCANIC ash, tuff, etc. , *ANALYTICAL geochemistry , *VOLCANIC activity prediction , *MORPHOTECTONICS - Abstract
The present study defines the stratigraphy of Poá s volcano by using geologic, petrographic, geochrono-logic and geochemical analyses made on the Poás units. The northern flank of the volcano is comprised of the following units: Rio Sarapiquí, La Paz Andesites, Tiribi Formation (from Barva volcano, but interdigitated with Poás stratigraphy), Rio Cuarto Lavas, Von Frantzius, Cerro Congo, Bosque Alegre and Laguna Kopper. The units on the southern flank are Colima Formation, La Paz Andesites, Tiribi, Achiote, Poasito, Sabana Redonda and Poás Lapilli Tuff. The central part of the volcano is made by the Poás Summit Unit, which includes the Main and Botos craters. The composition of the rocks spans the range from basalts to dacites. These units were geochemically correlated with two magmatic components: 1. The Sabana Redonda Geochemical Component (TiO2 > 1%) enriched in HSFE and other trace elements, present in La Paz Andesites, Lavas Rio Cuarto, Poasito, Sabana Redonda, Poás Lapilli Tuff and some from Botos crater lavas. 2. The Von Frantzius Geochemical Component (TiO2 < 0.8 %) is present in lavas of the Main crater, Von Frantzius, Achiote, Bosque Alegre, Cerro Congo and some Botos crater lavas. During the last 600 ka the content of K2O and other oxides (TiO2 and P2O5) and traces (Zr, Ba) have varied significantly through time, suggesting the presence of these two geochemical end-members since the beginning of the magmatic activity of Poás. Within similar ranges of time, units with high and low values of these elements have coexisted; the latter is true for Botos lavas and the Main crater. For units that possibly shared a common vent, such as La Paz Andesites, Achiote and Main crater, the percentages of K2O and TiO2 have decreased through time. Nevertheless, more geochronological data are needed to improve the interpretations given above. [ABSTRACT FROM AUTHOR]
- Published
- 2010
8. GEOLOGÍA DEL CUADRANTE TAPANTÍ (1:50 000), COSTA RICA.
- Author
-
Sojo, Dennis, Denyer, Percy, Gazel, Esteban, and Alvarado, Guillermo E.
- Subjects
- *
GEOLOGY , *VOLCANOES ,PARQUE Nacional Tapanti (Costa Rica) - Abstract
We present a geologic map of the Tapantí quadrangle, which is located in the central region of Costa Rica and belongs to the Central Costa Rica Deformed Belt (CCRDB). The CCRDB is a consequence of the interaction of the Cocos Ridge and the Western edge of the Panama microplate. The oldest rocks mapped in this work are Miocene in age and theyvbelongs to Pacacua, Peña Negra and Coris formations, than form the western edge of the Candelaria basin. Three igneous events were distinguished. First, the Miocene volcanic arc, which is represented by the rocks of La Cruz Formation and the clasts of Pacacua Formation. Another period of igneous activity was recorded in Grifo Alto and Doán formations and the Tapantí Intrusive, with an age range of 0.6-0.03 Ma. From a geochemical point of view is remarkable a change between 10 to 6 Ma, enrichment of K and Si and changes in U, Sr, Ba and La concentrations. This change corresponds with the Cocos Ridge arriving to the Middle America Trench and it is visible because the Pliocene magmatic arc, the Pliocene intrusive of Tapantí and the nowadays volcanic arc. The structural model suggests the existence of two deformation events, the first occurred during the period of time between Late Miocene and Pliocene and it formed the Folding Zone Orosi-Patarrá, and the second one corresponds to the establishment of CCRDB, from Pliocene to present, which is constituted by left lateral faults bearing ENE and right lateral faults bearing NW. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
9. VOLCANO-ESTRATIGRAFÍA Y TECTÓNICA DEL VALLE CENTRAL OCCIDENTAL Y LAS ESTRIBACIONES DE LOS MONTES DEL AGUACATE A LO LARGO DE LA RUTA 27, COSTA RICA.
- Author
-
Porras, Hernán, Cascante, Monserrat, Granados, Raquel, and Alvarado, Guillermo E.
- Subjects
- *
STRATIGRAPHIC geology , *GEOLOGY , *STRUCTURAL geology , *VOLCANIC ash, tuff, etc. , *THRUST faults (Geology) , *GEOLOGICAL formations - Abstract
Route 27, known as Ciudad Colón-Caldera Highway, offers excellent geological sections showing much of the volcanic and sub-volcanic stratigraphy of the western part of the Central Valley and the Aguacate Mountains foothills. Here a volcaniclastic succession correlated with the Grifo Alto Formation (Pliocene) is exposed. It consists of lavas, breccias and epivolcanic deposits (hyperconcetrated fluvial and debris avalanches deposits) that locally show strong propilitic alteration. In some places the succession is slightly to moderately tilted, faulted and cut by dykes. A series of old debris avalanche deposits is also present, related to the volcanic activity in the Aguacate Mountains. Locally, a series of monomictic mesobreccias units is exposed consisting of glassy andesitic blocks in a vitro-crystalline matrix ash interpreted as block and ash-flow deposits, which is probably coeval with the volcanic Monteverde Formation (Lower Pleistocene). At least, 4 units of debris flow/debris avalanche deposits are associated with Nuestro Amo Formation. At the upper part of the succession, several porphyrytic andesitic lava-flows, correlated to the Lower Colima Formation are followed by ignimbrites of the Puente de Mulas and Tiribí Formations, of middle Pleistocene age, containing hyperconcentrated fluvial-ignimbrite deposits with decreasing thicknesses. A propagation fold deforms these ignimbrites, indicating the existence of a thin-skinned type overthrust with a SW vergency, which was active since, at least, the middle Pleistocene. The tilting of the rocks exposed along Route 27, the type of fracturing/faulting and folding, and the existence of some structural highs, is well explained with the thrust faulting model proposed in this article. [ABSTRACT FROM AUTHOR]
- Published
- 2012
10. Like a cannonball: origin of dense spherical basaltic ejecta
- Author
-
Andrea Di Piazza, Alessandro Vona, Elisabetta Del Bello, Matteo Masotta, Silvio Mollo, Guillermo E. Alvarado, DI PIAZZA, Andrea, DEL BELLO, Elisabetta, Mollo, Silvio, Vona, Alessandro, Alvarado, Guillermo E., and Masotta, Matteo
- Subjects
Scoria cones ,Magma ascent rate ,010504 meteorology & atmospheric sciences ,Explosive material ,Cannonballs ,Mineralogy ,engineering.material ,010502 geochemistry & geophysics ,01 natural sciences ,Cannonball ,Scoria cone ,Geochemistry and Petrology ,Monogenic volcanoe ,Basaltic explosive eruptions ,Porosity ,Ejecta ,Petrology ,0105 earth and related environmental sciences ,Basalt ,geography ,Olivine ,geography.geographical_feature_category ,Monogenic volcanoes ,Basaltic explosive eruption ,Volcano ,Magma ,engineering ,Phenocryst ,Geology - Abstract
Cannonballs are rare spherical to sub-spherical eruptive products associated with basaltic explosive activity. The origin of cannonballs is still debated and subjected to a wide spectrum of different interpretations. In order to better understand the physicochemical mechanisms controlling the formation of these explosive products, we investigated the textural and chemical features of cannonballs from the Cerro Chopo monogenetic volcano (Costa Rica). These explosive products ubiquitously show a core domain with coalesced bubbles (30â36% porosity) wrapped in a dense rim domain with small, isolated bubbles (20â27% porosity). Both domains are identical in terms of bulk rock composition and mineral chemistry and are portions of the same magma batch. Results from combined petrological and thermodynamic modeling indicate that a low-viscosity (~20 Pa s) melt containing early-formed olivine phenocrysts (~9 vol.%) ascended from storage at a decompression rate of 0.5 MPa sâ1 until it reached a depth of 4.5 km (equivalent to a pressure of ~150 MPa). While rising from depth to 4.5 km, the melt underwent rapid decompression (0.5â2.6 MPa sâ1) and H2O exsolution, driving late-stage crystallization of the groundmass. The fast ascent velocity (21â110 m sâ1) while rising between 4.5 km and the surface induced turbulent (Re >103), annular flow development in the uppermost region of the conduit. We propose that cannonballs represent blebs of fluid magmas that underwent shear-driven detachment from the annulus of magma lining the conduit walls at depths lower than 4.5 km. The formation of such cannonballs is dictated by magma transport dynamics of low-viscosity, phenocryst-poor, and volatile-rich melts that rapidly accelerate within the shallow conduit.
- Published
- 2017
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.