1. Contact of the Samoan Plume with the Tonga Subduction from Intermediate and Deep-Focus Earthquakes
- Author
-
Pavla Hrubcová and Václav Vavryčuk
- Subjects
Tectonics ,Geophysics ,Lau Basin ,Subduction ,Lineament ,Geochemistry and Petrology ,Hotspot (geology) ,Convergent boundary ,Mantle (geology) ,Seismology ,Geology ,Deep-focus earthquake - Abstract
The Tonga subduction zone in the south-west Pacific is the fastest convergent plate boundary in the world with the most active mantle seismicity. This zone shows unique tectonic features including Samoan volcanic lineament of plume-driven origin near the northern rim of the Tonga subducting slab. The proximity of the Samoa hotspot to the slab is enigmatic and invokes debates on interactions between the Samoa plume and the Tonga subduction. Based on long-term observations of intermediate and deep-focus Tonga earthquakes reported in the Global Centroid Moment Tensor (CMT) catalog, we provide novel detailed imaging of this region. Accurate traveltime residua of the P- and S-waves recorded at two nearby seismic stations of the Global Seismographic Network are inverted for the P- and S-wave velocities and their ratio and reveal their pronounced lateral variations. In particular, they differ for the southern and northern parts of the Tonga subduction region. While no distinct anomalies are detected in the southern Tonga segment, striking low-velocity anomalies associated with a high Vp/Vs ratio are observed in the northern Tonga segment close to the Samoa plume. These anomalies spread through the whole upper mantle down to depths of ~ 600 km. Together with the fast extension of the northern back-arc Lau Basin, slab deformation and geochemical enrichment in the northern Tonga region, they trace deep-seated magmatic processes and evidence an interaction of the Tonga subduction with the Samoa plume.
- Published
- 2021
- Full Text
- View/download PDF