1. In-solution Y-chromosome capture-enrichment on ancient DNA libraries.
- Author
-
Cruz-Dávalos, Diana I., Nieves-Colón, María A., Sockell, Alexandra, Poznik, G. David, Schroeder, Hannes, Stone, Anne C., Bustamante, Carlos D., Malaspinas, Anna-Sapfo, and Ávila-Arcos, María C.
- Subjects
NUCLEOTIDE sequencing ,Y chromosome ,GENOMES ,EXPERIMENTAL design ,DNA analysis - Abstract
Background: As most ancient biological samples have low levels of endogenous DNA, it is advantageous to enrich for specific genomic regions prior to sequencing. One approach—in-solution capture-enrichment—retrieves sequences of interest and reduces the fraction of microbial DNA. In this work, we implement a capture-enrichment approach targeting informative regions of the Y chromosome in six human archaeological remains excavated in the Caribbean and dated between 200 and 3000 years BP. We compare the recovery rate of Y-chromosome capture (YCC) alone, whole-genome capture followed by YCC (WGC + YCC) versus non-enriched (pre-capture) libraries. Results: The six samples show different levels of initial endogenous content, with very low (< 0.05%, 4 samples) or low (0.1–1.54%, 2 samples) percentages of sequenced reads mapping to the human genome. We recover 12–9549 times more targeted unique Y-chromosome sequences after capture, where 0.0–6.2% (WGC + YCC) and 0.0–23.5% (YCC) of the sequence reads were on-target, compared to 0.0–0.00003% pre-capture. In samples with endogenous DNA content greater than 0.1%, we found that WGC followed by YCC (WGC + YCC) yields lower enrichment due to the loss of complexity in consecutive capture experiments, whereas in samples with lower endogenous content, the libraries’ initial low complexity leads to minor proportions of Y-chromosome reads. Finally, increasing recovery of informative sites enabled us to assign Y-chromosome haplogroups to some of the archeological remains and gain insights about their paternal lineages and origins. Conclusions: We present to our knowledge the first in-solution capture-enrichment method targeting the human Y-chromosome in aDNA sequencing libraries. YCC and WGC + YCC enrichments lead to an increase in the amount of Y-DNA sequences, as compared to libraries not enriched for the Y-chromosome. Our probe design effectively recovers regions of the Y-chromosome bearing phylogenetically informative sites, allowing us to identify paternal lineages with less sequencing than needed for pre-capture libraries. Finally, we recommend considering the endogenous content in the experimental design and avoiding consecutive rounds of capture, as clonality increases considerably with each round. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF