8 results on '"Darren Grafham"'
Search Results
2. The zebrafish reference genome sequence and its relationship to the human genome
- Author
-
Kerstin Howe, Matthew D. Clark, Carlos F. Torroja, James Torrance, Camille Berthelot, Matthieu Muffato, John E. Collins, Sean Humphray, Karen McLaren, Lucy Matthews, Stuart McLaren, Ian Sealy, Mario Caccamo, Carol Churcher, Carol Scott, Jeffrey C. Barrett, Romke Koch, Gerd-Jörg Rauch, Simon White, William Chow, Britt Kilian, Leonor T. Quintais, José A. Guerra-Assunção, Yi Zhou, Yong Gu, Jennifer Yen, Jan-Hinnerk Vogel, Tina Eyre, Seth Redmond, Ruby Banerjee, Jianxiang Chi, Beiyuan Fu, Elizabeth Langley, Sean F. Maguire, Gavin K. Laird, David Lloyd, Emma Kenyon, Sarah Donaldson, Harminder Sehra, Jeff Almeida-King, Jane Loveland, Stephen Trevanion, Matt Jones, Mike Quail, Dave Willey, Adrienne Hunt, John Burton, Sarah Sims, Kirsten McLay, Bob Plumb, Joy Davis, Chris Clee, Karen Oliver, Richard Clark, Clare Riddle, David Elliott, Glen Threadgold, Glenn Harden, Darren Ware, Sharmin Begum, Beverley Mortimore, Giselle Kerry, Paul Heath, Benjamin Phillimore, Alan Tracey, Nicole Corby, Matthew Dunn, Christopher Johnson, Jonathan Wood, Susan Clark, Sarah Pelan, Guy Griffiths, Michelle Smith, Rebecca Glithero, Philip Howden, Nicholas Barker, Christine Lloyd, Christopher Stevens, Joanna Harley, Karen Holt, Georgios Panagiotidis, Jamieson Lovell, Helen Beasley, Carl Henderson, Daria Gordon, Katherine Auger, Deborah Wright, Joanna Collins, Claire Raisen, Lauren Dyer, Kenric Leung, Lauren Robertson, Kirsty Ambridge, Daniel Leongamornlert, Sarah McGuire, Ruth Gilderthorp, Coline Griffiths, Deepa Manthravadi, Sarah Nichol, Gary Barker, Siobhan Whitehead, Michael Kay, Jacqueline Brown, Clare Murnane, Emma Gray, Matthew Humphries, Neil Sycamore, Darren Barker, David Saunders, Justene Wallis, Anne Babbage, Sian Hammond, Maryam Mashreghi-Mohammadi, Lucy Barr, Sancha Martin, Paul Wray, Andrew Ellington, Nicholas Matthews, Matthew Ellwood, Rebecca Woodmansey, Graham Clark, James D. Cooper, Anthony Tromans, Darren Grafham, Carl Skuce, Richard Pandian, Robert Andrews, Elliot Harrison, Andrew Kimberley, Jane Garnett, Nigel Fosker, Rebekah Hall, Patrick Garner, Daniel Kelly, Christine Bird, Sophie Palmer, Ines Gehring, Andrea Berger, Christopher M. Dooley, Zübeyde Ersan-Ürün, Cigdem Eser, Horst Geiger, Maria Geisler, Lena Karotki, Anette Kirn, Judith Konantz, Martina Konantz, Martina Oberländer, Silke Rudolph-Geiger, Mathias Teucke, Christa Lanz, Günter Raddatz, Kazutoyo Osoegawa, Baoli Zhu, Amanda Rapp, Sara Widaa, Cordelia Langford, Fengtang Yang, Stephan C. Schuster, Nigel P. Carter, Jennifer Harrow, Zemin Ning, Javier Herrero, Steve M. J. Searle, Anton Enright, Robert Geisler, Ronald H. A. Plasterk, Charles Lee, Monte Westerfield, Pieter J. de Jong, Leonard I. Zon, John H. Postlethwait, Christiane Nüsslein-Volhard, Tim J. P. Hubbard, Hugues Roest Crollius, Jane Rogers, Derek L. Stemple, and Hubrecht Institute for Developmental Biology and Stem Cell Research
- Subjects
Genetics ,0303 health sciences ,Genome evolution ,Multidisciplinary ,Gene prediction ,Pseudogene ,Genome project ,Biology ,biology.organism_classification ,Genome ,Article ,03 medical and health sciences ,0302 clinical medicine ,Gene density ,Zebrafish ,030217 neurology & neurosurgery ,030304 developmental biology ,Reference genome - Abstract
Zebrafish have become a popular organism for the study of vertebrate gene function1,2. The virtually transparent embryos of this species, and the ability to accelerate genetic studies by gene knockdown or overexpression, have led to the widespread use of zebrafish in the detailed investigation of vertebrate gene function and increasingly, the study of human genetic disease3–5. However, for effective modelling of human genetic disease it is important to understand the extent to which zebrafish genes and gene structures are related to orthologous human genes. To examine this, we generated a high-quality sequence assembly of the zebrafish genome, made up of an overlapping set of completely sequenced large-insert clones that were ordered and oriented using a high-resolution high-density meiotic map. Detailed automatic and manual annotation provides evidence of more than 26,000 protein-coding genes6, the largest gene set of any vertebrate so far sequenced. Comparison to the human reference genome shows that approximately 70% of human genes have at least one obvious zebrafish orthologue. In addition, the high quality of this genome assembly provides a clearer understanding of key genomic features such as a unique repeat content, a scarcity of pseudogenes, an enrichment of zebrafish-specific genes on chromosome 4 and chromosomal regions that influence sex determination.
- Published
- 2013
3. Sequence Finishing on New Platforms
- Author
-
Darren Grafham and Andries J. van Tonder
- Subjects
Genetics ,DNA sequencer ,Massive parallel sequencing ,Shotgun sequencing ,Hybrid genome assembly ,Computational biology ,Biology ,Genome ,DNA sequencing ,ABI Solid Sequencing ,Illumina dye sequencing - Abstract
In the past five years, next generation sequencing (NGS) technology platforms have been released and have become the tool of choice for sequencing genomes. Methods for sequence finishing have had to be updated to deal with the issues created by NGS platforms. Finishing begins with the assembling of the reads produced by the sequencing machines before computational gap closure is attempted. Remaining gaps are identified and suitable experimental techniques such as polymerase chain reactions are used to close these. Until recently, the aim for many genome sequencing projects has been to fully finish genomes. However, due to the time and cost associated with finishing, the majority of future genomes will only reach a high-quality draft. New genome standards have had to be defined to better reflect the types of sequencing now being undertaken. Improvements to the current generation of sequencing machines along with the advent of the third-generation technologies means that new ways of dealing with the data volume will need to be sought. Key Concepts: Next generation sequencing platforms have generated new issues for sequence finishing, which have required novel solutions. Genome standards have had to be updated to better reflect NGS data. Keywords: next generation sequencing; finishing; Roche (R) 454 Life Science Genome Sequencer; Illumina (R) Genome Analyzer II; Applied Bioystems (R) SOLiD system; DNA; PCR
- Published
- 2011
- Full Text
- View/download PDF
4. Analysis of multiple genomic sequence alignments: a web resource, online tools, and lessons learned from analysis of mammalian SCL loci
- Author
-
Jane Rogers, Anthony R. Green, Ian J. Donaldson, James G. R. Gilbert, Darren Grafham, Berthold Göttgens, and Michael A Chapman
- Subjects
Genetic Markers ,Web server ,Molecular Sequence Data ,Lyases ,Genomics ,Sequence alignment ,Locus (genetics) ,Computational biology ,Biology ,computer.software_genre ,Genome ,Online Systems ,Mice ,Dogs ,Databases, Genetic ,Genetics ,Animals ,Humans ,Genetics (clinical) ,Internet ,Leukemia ,Genome, Human ,Resources ,Rats ,DNA binding site ,Research Design ,Pairwise comparison ,Human genome ,computer ,Sequence Alignment ,Genes, Neoplasm - Abstract
Comparative analysis of genomic sequences is becoming a standard technique for studying gene regulation. However, only a limited number of tools are currently available for the analysis of multiple genomic sequences. An extensive data set for the testing and training of such tools is provided by the SCL gene locus. Here we have expanded the data set to eight vertebrate species by sequencing the dog SCL locus and by annotating the dog and rat SCL loci. To provide a resource for the bioinformatics community, all SCL sequences and functional annotations, comprising a collation of the extensive experimental evidence pertaining to SCL regulation, have been made available via a Web server. A Web interface to new tools specifically designed for the display and analysis of multiple sequence alignments was also implemented. The unique SCL data set and new sequence comparison tools allowed us to perform a rigorous examination of the true benefits of multiple sequence comparisons. We demonstrate that multiple sequence alignments are, overall, superior to pairwise alignments for identification of mammalian regulatory regions. In the search for individual transcription factor binding sites, multiple alignments markedly increase the signal-to-noise ratio compared to pairwise alignments.
- Published
- 2004
5. Initial sequencing and comparative analysis of the mouse genome
- Author
-
Laura Elnitski, David B. Jaffe, Jia Li, Marina Alexandersson, Michael J. Morgan, Shiaw Pyng Yang, Robert Baertsch, Claire M. Wade, John Tromp, Michael C. Zody, Terrence S. Furey, Emma Overton-Larty, Stephen D. Brown, Scott Schwartz, Diane M. Dunn, J. P. Leger, Kris A. Wetterstrand, David Torrents, Ratna Shownkeen, Brian Schultz, Kim C. Worley, Richard D. Emes, John Mayer, Tom Landers, Beverley Meredith, Carol Scott, R. J. Weber, Sean R. Eddy, David Kulp, Jun Kawai, J Bailey, Fan Hsu, Diana L. Kolbe, Kirsten McLay, Marc Botcherby, Richard Mott, Tracie L. Miner, Jill P. Mesirov, Cristyn Kells, Michael A. Quail, Melanie M. Wall, Alistair G. Rust, Josep F. Abril, Ian F Korf, Peter An, Roderic Guigó, Abel Ureta-Vidal, Evan Mauceli, L. Steven Johnson, Arian F.A. Smit, Arkadiusz Kasprzyk, Michael C. Wendl, Deanna M. Church, Francis S. Collins, Wayne N. Frankel, Pallavi Eswara, Bin Ma, Robert H. Waterston, Stylianos E. Antonarakis, Edward M. Rubin, John Douglas Mcpherson, Andrew Sheridan, Megan McCarthy, Ming Li, Colin N. Dewey, Justin Deri, Rosie Levine, Matthew Jones, Sheila Dodge, Richard R. Copley, Leo Goodstadt, Shan Yang, Donna Maglott, Jamey Wierzbowski, Nick Goldman, Evgeny M. Zdobnov, Simon G. Gregory, C M Clee, Steven Leonard, Elaine R. Mardis, Simon C. Potter, Sarah Sims, Richard A. Gibbs, Mark S. Guyer, Francesca Chiaromonte, Susan Lucas, Mark Diekhans, Steve Searle, Rachel Ainscough, Jane Peterson, Emmanouil T. Dermitzakis, Robert Nicol, Lucy Matthews, Guy Slater, Adam Felsenfeld, Karen Foley, Lucinda Fulton, Tim Hubbard, Richard K. Wilson, Deana W. LaHillier, W. Richard McCombie, Johanna Thompson, Robert David, John Attwood, Anthony P. West, Jane Rogers, Evan Keibler, Lisa Cook, Raju Kucherlapati, Steven Seaman, William E. Nash, Ian J. Jackson, Jonathan Singer, Axin Hua, Tina Graves, Ted Sharpe, Dudley Wyman, Bruce W. Birren, Stuart McLaren, David Willey, A Joy, Douglas Smith, Alexandre Reymond, Paul Flicek, Simon Cawley, Richa Agarwala, Diane Gage, Evanne Trevaskis, Ginger A. Fewell, Michael R. Brent, Tracy C. Ponce, W. James Kent, Timothy Holzer, Eduardo Eyras, Michael J. O’Connor, Webb Miller, Donna M. Muzny, Andrew von Niederhausern, Inna Dubchak, Eitan E. Winter, Catherine Ucla, Arne Stabenau, Michael N. Nhan, Piero Carninci, Michele Clamp, Pavel A. Pevzner, James Meldrim, Tim Cutts, R. D. Campbell, Joy Davies, Wratko Hlavina, Elinor K. Karlsson, David Haussler, John Burton, Peer Bork, Nicole Stange-Thomann, Mikita Suyama, Mark J. Daly, Ewan Birney, Edward J. Kulbokas, Craig Pohl, James C. Mullikin, Chad Nusbaum, Genís Parra, Jade P. Vinson, Yoshihide Hayashizaki, Sante Gnerre, Eric Berry, Daniel G. Brown, Asif T. Chinwalla, Emmanuel Mongin, Robert B. Weiss, Raymond Wheeler, Andrew Kirby, Yasushi Okazaki, Lior Pachter, Ross C. Hardison, Brian Spencer, Carol J. Bult, Joanne O. Nelson, Pankaj K. Agarwal, Darren Grafham, Gustavo Glusman, Thomas A. Jones, Glenn Tesler, Simon Whelan, James Cuff, Robert S. Fulton, K F Barlow, Jörg Schultz, Matthias S. Schwartz, Alex Poliakov, Jonathan Butler, Bruce A. Roe, Angela S. Hinrichs, Alan Coulson, Kate Montgomery, Eric D. Green, Stephan Beck, Val Curwen, Krishna M. Roskin, Robert W. Plumb, Chris P. Ponting, Ralph Santos, Victor Sapojnikov, Nicolas Bray, Kymberlie H. Pepin, Charles W. Sugnet, Olivier Couronne, Ivica Letunic, Sophie Williams, Kimberly D. Delehaunty, Kerstin Lindblad-Toh, Zemin Ning, Karen Oliver, Toby Bloom, Michael Kamal, Nicholas J. Dickens, Eric S. Lander, Christine Lloyd, Donna Karolchik, Adrienne Hunt, Antonarakis, Stylianos, Couronne, Olivier, Dermitzakis, Emmanouil, and Zdobnov, Evgeny
- Subjects
RNA, Untranslated ,Proteome ,Untranslated/genetics ,Genome ,Transgenic ,Repetitive Sequences ,Mice ,Models ,Neoplasms ,Conserved Sequence ,ddc:616 ,Genetics ,Mice, Knockout ,Base Composition ,Multidisciplinary ,Sex Chromosomes ,Pseudogenes/genetics ,Genomics ,Multigene Family/genetics ,Physical Chromosome Mapping ,Neoplasms/genetics ,CpG Islands/genetics ,Proteome/genetics ,Genetic Variation/genetics ,Multigene Family ,Mice/classification/ genetics ,Models, Animal ,Conserved Sequence/genetics ,Sequence Analysis ,Pseudogenes ,Human ,Genome evolution ,Evolution ,Sequence analysis ,Knockout ,Quantitative Trait Loci ,Mice, Transgenic ,Sex Chromosomes/genetics ,Computational biology ,Biology ,Synteny ,Chromosomes ,Evolution, Molecular ,Nucleic Acid/genetics ,Genetic ,Species Specificity ,Mammalian/ genetics ,Animals ,Humans ,Genes/genetics ,Selection, Genetic ,Selection ,Repetitive Sequences, Nucleic Acid ,Comparative genomics ,Animal ,Genome, Human ,Molecular ,Genetic Variation ,DNA ,Sequence Analysis, DNA ,Chromosomes, Mammalian ,Gene Expression Regulation ,Genes ,Mutagenesis ,RNA ,Human genome ,CpG Islands ,Quantitative Trait Loci/genetics ,Reference genome - Abstract
The sequence of the mouse genome is a key informational tool for understanding the contents of the human genome and a key experimental tool for biomedical research. Here, we report the results of an international collaboration to produce a high-quality draft sequence of the mouse genome. We also present an initial comparative analysis of the mouse and human genomes, describing some of the insights that can be gleaned from the two sequences. We discuss topics including the analysis of the evolutionary forces shaping the size, structure and sequence of the genomes; the conservation of large-scale synteny across most of the genomes; the much lower extent of sequence orthology covering less than half of the genomes; the proportions of the genomes under selection; the number of protein-coding genes; the expansion of gene families related to reproduction and immunity; the evolution of proteins; and the identification of intraspecies polymorphism.
- Published
- 2002
6. Genome Project Standards in a New Era of Sequencing
- Author
-
George M. Weinstock, D. C. Bruce, Dawn Field, Scott H. Harrison, Eugene Kolker, T. Metha, Patrick S. G. Chain, Jeremy Schmutz, Xiang Qin, Julian Parkhill, Tina GravesT. Graves, D. Lang, Karen E. Nelson, Robert L. Strausberg, Aye Wollam, Alla Lapidus, Victor Markowitz, Yan Ding, Michael Fitzgerald, Robert S. Fulton, Donna M. Muzny, Jessica B. Hostetler, Samuel Pitluck, S. A. Malfatti, Chinnappa D. Kodira, James R. Cole, Christian J. Buhay, Nicholas R. Thomson, Shanmuga Sozhamannan, George M. Garrity, Bruce W. Birren, James M. Tiedje, Darren Grafham, Shannon Dugan, Timothy D. Read, Richard A. Gibbs, Granger G. Sutton, Johar Ali, H. M. Khouri, Cliff S. Han, Peter Sterk, Nikos C. Kyrpides, Philip Hugenholtz, Sarah K. Highlander, and John C. Detter
- Subjects
Genetics ,Multidisciplinary ,Contig ,Test data generation ,DNA sequencing theory ,Pyrosequencing ,Hybrid genome assembly ,Genomics ,Genome project ,Biology ,Data science ,Genome - Abstract
For over a decade, genome sequences have adhered to only two standards that are relied on for purposes of sequence analysis by interested third parties (1, 2). However, ongoing developments in revolutionary sequencing technologies have resulted in a redefinition of traditional whole-genome sequencing that requires reevaluation of such standards. With commercially available 454 pyrosequencing (followed by Illumina, SOLiD, and now Helicos), there has been an explosion of genomes sequenced under the moniker “draft”; however, these can be very poor quality genomes (due to inherent errors in the sequencing technologies, and the inability of assembly programs to fully address these errors). Further, one can only infer that such draft genomes may be of poor quality by navigating through the databases to find the number and type of reads deposited in sequence trace repositories (and not all genomes have this available), or to identify the number of contigs or genome fragments deposited to the database. The difficulty in assessing the quality of such deposited genomes has created some havoc for genome analysis pipelines and has contributed to many wasted hours. Exponential leaps in raw sequencing capability and greatly reduced prices have further skewed the time- and cost-ratios of draft data generation versus the painstaking process of improving and finishing a genome. The result is an ever-widening gap between drafted and finished genomes that only promises to continue (see the figure, page 236); hence, there is an urgent need to distinguish good from poor data sets.
- Published
- 2009
- Full Text
- View/download PDF
7. The DNA sequence of human chromosome 22
- Author
-
L. Song, D. M. Lloyd, R. M. Swann, Ian F Korf, Lucinda Fulton, Carol Soderlund, I. D. Martyn, A. King, W Burrill, H. Wu, Y. Ramsey, Tracy Rohlfing, Mark T. Ross, Robert S. Fulton, L. Spragon, Darek Kedra, Laurens G. Wilming, Lisa Edelmann, James G. R. Gilbert, L. Williams, L. Chu, K. Fleming, J. Burgess, S. Shaull, M. N. Whiteley, Phil Latreille, Y. Qian, Ian Dunham, Dan Layman, Jennifer Lewis, A. C.C. Wong, Nobuyoshi Shimizu, Noriaki Aoki, Melanie M. Wall, Margaret A. Leversha, Ingegerd Fransson, M. Vaudin, Takashi Sasaki, Bernice E. Morrow, Graeme T Clark, S. Lewis, S. M. Clegg, H. Ramsay, A M Kimberley, S. J. Dodsworth, Melvin I. Simon, Stephan Beck, D. Conroy, Joseph A. Murray, Michele Clamp, Jan P. Dumanski, Christine Lloyd, Joseph L. McClay, P. Hu, Genwei Zhang, Adrienne Hunt, Steve Kenton, Antony V. Cox, Tina Graves, T. Nguyen, Lesley J. Rogers, Kazuhiko Kawasaki, Luc J. Smink, C. Dockree, J. M. Fey, J. C. Davis, U. J. Kim, Nigel P. Carter, Philip Ozersky, R. W. Heathcott, Richard Durbin, Ai Shintani, J Bailey, S. Bourne, Feng Chen, Harminder Sehra, Sulagna C. Saitta, G. Hall-Tamlyn, Charmain L. Wright, A. A. Garner, T. Do, Jane Rogers, Rebekah Hall, Joseph A. Bedell, Shuichi Asakawa, K Bates, J P Almeida, C. Hall, R. Pavitt, Charlotte G. Cole, K. Hinds, N Corby, V. Cobley, D. Pearson, Beverly S. Emanuel, C. Odell, Carl E.G. Bruder, Darren Grafham, Hiroki Kurahashi, Cordelia Langford, Dave Willey, T. E. Wilmer, David R. Bentley, I. Tapia, Hiroaki Shizuya, Myriam Peyrard, Tamim H. Shaikh, J K Kershaw, F. Fang, LaDeana W. Hillier, P. Loh, C L Bagguley, Tim Hubbard, John Sulston, Z. Wang, Kazunori Shibuya, R. E. Collier, Melanie E. Goward, K F Barlow, Richard Bruskiewich, M. L. Budarf, Yuan Chen, Kathryn L. Evans, Sarah E. Hunt, Judy S. Crabtree, Benjamin Phillimore, Stuart McLaren, M Mashreghi-Mohammadi, S. Chissoe, D. Willingham, J. Hawkins, Huaqin Pan, Q. Wang, Michelle Smith, H. Bradshaw, C. Walker, C. D. Skuce, Jim White, Amanda McMurray, Lucy Matthews, John Burton, Patricia Wohldmann, G. Bemis, O. Beasley, Robert H. Waterston, David W. Johnson, Elaine R. Mardis, H. Williamson, D. Buck, Yuhang Wang, Andrew D. Ellington, Zijin Du, Eyal Seroussi, Susumu Mitsuyama, A. Wamsley, Joanne O. Nelson, Y. Yoshizaki, K. P. O'Brien, H. I. Lao, R. Connor, S. Smalley, Anne Bridgeman, R Ainscough, Matthew Jones, Elisabeth Dawson, Joanna Collins, Pawandeep Dhami, S. Holmes, S. Phan, L. Ray, Angela Dorman, O. T. McCann, Christine P. Bird, Sarah Milne, Q. Ren, B. J. Mortimore, Carol Scott, Lisa French, Shuk-Mei Ho, G. J. Coville, Richard K. Wilson, Patrick Minx, Ziyun Yao, Jun Kudoh, David Beare, Charles A. Steward, Hongshing Lai, Alexander Johnson, Scott M. Williams, Robert W. Plumb, M. Zhan, Y. Fu, A. V. Pearce, S. Blakey, D. Goela, Gavin K. Laird, N. Miller, Matt Cordes, Kymberlie H. Pepin, Sam Phillips, David Bentley, Stéphane Deschamps, A. Do, Shaoping Lin, Shinsei Minoshima, Bruce A. Roe, Axin Hua, S. Qi, C Carder, Paul Scheet, Mark Griffiths, A K Babbage, J. M. Wallis, Heather E. McDermid, Eda Malaj, D. Sloan, and K. Kemp
- Subjects
Multidisciplinary ,Sequence analysis ,Chromosomes, Human, Pair 22 ,Molecular Sequence Data ,Nucleic acid sequence ,Gene Dosage ,Chromosome Mapping ,Computational biology ,DNA ,Sequence Analysis, DNA ,Biology ,ENCODE ,Genome ,Complete sequence ,Mice ,Species Specificity ,Human Genome Project ,Animals ,Humans ,Human genome ,Sequence (medicine) ,Genomic organization ,Repetitive Sequences, Nucleic Acid - Abstract
Knowledge of the complete genomic DNA sequence of an organism allows a systematic approach to defining its genetic components. The genomic sequence provides access to the complete structures of all genes, including those without known function, their control elements, and, by inference, the proteins they encode, as well as all other biologically important sequences. Furthermore, the sequence is a rich and permanent source of information for the design of further biological studies of the organism and for the study of evolution through cross-species sequence comparison. The power of this approach has been amply demonstrated by the determination of the sequences of a number of microbial and model organisms. The next step is to obtain the complete sequence of the entire human genome. Here we report the sequence of the euchromatic part of human chromosome 22. The sequence obtained consists of 12 contiguous segments spanning 33.4 megabases, contains at least 545 genes and 134 pseudogenes, and provides the first view of the complex chromosomal landscapes that will be found in the rest of the genome.
- Published
- 1999
8. Correction: Corrigendum: Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution
- Author
-
Lindsay Robertson, Christian von Mering, David Torrents, Paul E. Boardman, Erik Axelsson, Pieter J. deJong, Darren K. Griffin, Ivan Ovcharenko, James K. Bonfield, Tina Graves, Hidetoshi Inoko, Cheryll Tickle, Tracie L. Miner, Kevin J. Beattie, Leo Goodstadt, David W. Burt, John W. Wallis, Richard P. M. A. Crooijmans, Marcia M. Miller, Zissimos Mourelatos, David Speed, Dan Layman, Robert L. Davies, Laura Elnitski, Michael N Romanov, Michael R. Brent, Francesca Chiaromonte, Svitlana Tyekucheva, Jun Wang, Susanne Kerje, Wesley C. Warren, J. J. Emerson, Sergi Castellano, Catrina Fronick, Mary E. Delany, Stuart McLaren, Eduardo Eyras, Kimberly D. Delehaunty, Takashi Shiina, Lucinda Fulton, Michael N. Nhan, Elaine R. Mardis, Mikael Brandström, Patrick Minx, LaDeana W. Hillier, Pavel A. Pevzner, John Douglas Mcpherson, Adam Siepel, David C. King, Lisa Stubbs, Ivica Letunic, Niclas Backström, Hiroshi Arakawa, Maxim Koriabine, Stephen M. J. Searle, Valerie Fillon, Gill Bejerano, Bob Paton, Glenn Tesler, Jessica Severin, Ze Cheng, Leif C. Andersson, Zhirong Bao, David Haussler, Roderic Guigó, Francisco Camara, Sandra W. Clifton, Robert Ivarie, Rick K. Wilson, James C. Kaufman, Mikhail Nefedov, Scott M. Smith, David Shteynberg, Anton Nekrutenko, Mikita Suyama, Jacqueline Smith, Susan Lucas, Arian F.A. Smit, Robert Castelo, Martien A. M. Groenen, Ewan Birney, William Brown, Shiaw-Pyng Yang, Karsten Skjoedt, Lina Jacobbson, Carol Scott, Paul Flicek, Webb Miller, Andrzej M. Kierzek, Yuri Bezzubov, Catherine M. Rondelli, David Morrice, Olivier Pourquié, Stylianos E. Antonarakis, Michael D. R. Croning, Catherine Ucla, Brian J. Raney, Jan Aerts, Jian Wang, Lachlan G. Oddy, Simon J. Hubbard, Peer Bork, Asif T. Chinwalla, Anusha Radakrishnan, Evgeny M. Zdobnov, Artemis G. Hatzigeorgiou, Hans Ellegren, Alain Vignal, Jean-Marie Buerstedde, Matthew T. Webster, Robert S. Harris, Lior Pachter, Henrik Kaessmann, Manyuan Long, Bin Liu, Colin Kremitzki, Pallavi Eswara, Jane Rogers, Evan E. Eichler, Darren Grafham, Jianbin He, D. Waddington, Laurie Gordon, Caleb Webber, W. James Kent, Sam Griffiths-Jones, Gane Ka-Shu Wong, Esther Betrán, Andrew H. Paterson, Sourav Chatterji, Jan J. van der Poel, Nicholas J. Dickens, Terrence S. Furey, Genís Parra, Ian M. Overton, Chris P. Ponting, Randolph B. Caldwell, Sofia Berlin, Isabelle Dupanloup, Rachel A. Harte, Eray Tuzun, Julio S. Masabanda, Matthew D. Francis, Elizabeth J. Huckle, Andy Law, Robert S. Fulton, Kateryna D. Makova, Jan Salomonsen, William E. Nash, Helen G. Tempest, Ross C. Hardison, Sean Humphray, Jerry B. Dodgson, James E. Taylor, Paul F. Cliften, Guillaume Bourque, Monique Rijnkels, Angie S. Hinrichs, Joanne O. Nelson, Josep F. Abril, Colin N. Dewey, Alexandre Reymond, Andrei Kouranov, Craig Pohl, Michael M. Hoffman, Jun Yu, Vincent Magrini, Jacqueline M. Bye, Huanming Yang, Abel Ureta-Vidal, Ruth Taylor, Laura M. Daniels, Shan Yang, Stuart A. Wilson, and Jennifer Randall-Maher
- Subjects
Multidisciplinary ,biology ,Evolutionary biology ,biology.animal ,Perspective (graphical) ,Vertebrate ,Erratum ,Genome ,Sequence (medicine) - Published
- 2005
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.