36 results on '"R. Madupu"'
Search Results
2. Two new complete genome sequences offer insight into host and tissue specificity of plant pathogenic Xanthomonas spp.
- Author
-
Bogdanove AJ, Koebnik R, Lu H, Furutani A, Angiuoli SV, Patil PB, Van Sluys MA, Ryan RP, Meyer DF, Han SW, Aparna G, Rajaram M, Delcher AL, Phillippy AM, Puiu D, Schatz MC, Shumway M, Sommer DD, Trapnell C, Benahmed F, Dimitrov G, Madupu R, Radune D, Sullivan S, Jha G, Ishihara H, Lee SW, Pandey A, Sharma V, Sriariyanun M, Szurek B, Vera-Cruz CM, Dorman KS, Ronald PC, Verdier V, Dow JM, Sonti RV, Tsuge S, Brendel VP, Rabinowicz PD, Leach JE, White FF, and Salzberg SL
- Subjects
- Arabidopsis microbiology, Molecular Sequence Data, Oryza microbiology, Xanthomonas physiology, Genome, Bacterial genetics, Xanthomonas genetics
- Abstract
Xanthomonas is a large genus of bacteria that collectively cause disease on more than 300 plant species. The broad host range of the genus contrasts with stringent host and tissue specificity for individual species and pathovars. Whole-genome sequences of Xanthomonas campestris pv. raphani strain 756C and X. oryzae pv. oryzicola strain BLS256, pathogens that infect the mesophyll tissue of the leading models for plant biology, Arabidopsis thaliana and rice, respectively, were determined and provided insight into the genetic determinants of host and tissue specificity. Comparisons were made with genomes of closely related strains that infect the vascular tissue of the same hosts and across a larger collection of complete Xanthomonas genomes. The results suggest a model in which complex sets of adaptations at the level of gene content account for host specificity and subtler adaptations at the level of amino acid or noncoding regulatory nucleotide sequence determine tissue specificity.
- Published
- 2011
- Full Text
- View/download PDF
3. A catalog of reference genomes from the human microbiome.
- Author
-
Nelson KE, Weinstock GM, Highlander SK, Worley KC, Creasy HH, Wortman JR, Rusch DB, Mitreva M, Sodergren E, Chinwalla AT, Feldgarden M, Gevers D, Haas BJ, Madupu R, Ward DV, Birren BW, Gibbs RA, Methe B, Petrosino JF, Strausberg RL, Sutton GG, White OR, Wilson RK, Durkin S, Giglio MG, Gujja S, Howarth C, Kodira CD, Kyrpides N, Mehta T, Muzny DM, Pearson M, Pepin K, Pati A, Qin X, Yandava C, Zeng Q, Zhang L, Berlin AM, Chen L, Hepburn TA, Johnson J, McCorrison J, Miller J, Minx P, Nusbaum C, Russ C, Sykes SM, Tomlinson CM, Young S, Warren WC, Badger J, Crabtree J, Markowitz VM, Orvis J, Cree A, Ferriera S, Fulton LL, Fulton RS, Gillis M, Hemphill LD, Joshi V, Kovar C, Torralba M, Wetterstrand KA, Abouellleil A, Wollam AM, Buhay CJ, Ding Y, Dugan S, FitzGerald MG, Holder M, Hostetler J, Clifton SW, Allen-Vercoe E, Earl AM, Farmer CN, Liolios K, Surette MG, Xu Q, Pohl C, Wilczek-Boney K, and Zhu D
- Subjects
- Bacteria classification, Bacteria genetics, Bacterial Proteins chemistry, Bacterial Proteins genetics, Biodiversity, Computational Biology, Databases, Genetic, Gastrointestinal Tract microbiology, Genes, Bacterial, Genetic Variation, Genome, Archaeal, Humans, Metagenomics methods, Metagenomics standards, Mouth microbiology, Peptides chemistry, Peptides genetics, Phylogeny, Respiratory System microbiology, Skin microbiology, Urogenital System microbiology, Genome, Bacterial, Metagenome genetics, Sequence Analysis, DNA standards
- Abstract
The human microbiome refers to the community of microorganisms, including prokaryotes, viruses, and microbial eukaryotes, that populate the human body. The National Institutes of Health launched an initiative that focuses on describing the diversity of microbial species that are associated with health and disease. The first phase of this initiative includes the sequencing of hundreds of microbial reference genomes, coupled to metagenomic sequencing from multiple body sites. Here we present results from an initial reference genome sequencing of 178 microbial genomes. From 547,968 predicted polypeptides that correspond to the gene complement of these strains, previously unidentified ("novel") polypeptides that had both unmasked sequence length greater than 100 amino acids and no BLASTP match to any nonreference entry in the nonredundant subset were defined. This analysis resulted in a set of 30,867 polypeptides, of which 29,987 (approximately 97%) were unique. In addition, this set of microbial genomes allows for approximately 40% of random sequences from the microbiome of the gastrointestinal tract to be associated with organisms based on the match criteria used. Insights into pan-genome analysis suggest that we are still far from saturating microbial species genetic data sets. In addition, the associated metrics and standards used by our group for quality assurance are presented.
- Published
- 2010
- Full Text
- View/download PDF
4. The complete genome of Teredinibacter turnerae T7901: an intracellular endosymbiont of marine wood-boring bivalves (shipworms).
- Author
-
Yang JC, Madupu R, Durkin AS, Ekborg NA, Pedamallu CS, Hostetler JB, Radune D, Toms BS, Henrissat B, Coutinho PM, Schwarz S, Field L, Trindade-Silva AE, Soares CA, Elshahawi S, Hanora A, Schmidt EW, Haygood MG, Posfai J, Benner J, Madinger C, Nove J, Anton B, Chaudhary K, Foster J, Holman A, Kumar S, Lessard PA, Luyten YA, Slatko B, Wood N, Wu B, Teplitski M, Mougous JD, Ward N, Eisen JA, Badger JH, and Distel DL
- Subjects
- Animals, Bivalvia metabolism, Computational Biology, Nitrogen metabolism, Phylogeny, Polysaccharides metabolism, Proteobacteria classification, Proteobacteria enzymology, Proteobacteria physiology, Quorum Sensing, Spectrometry, Mass, Electrospray Ionization, Tandem Mass Spectrometry, Bivalvia microbiology, Genome, Bacterial, Marine Biology, Proteobacteria genetics, Symbiosis, Wood
- Abstract
Here we report the complete genome sequence of Teredinibacter turnerae T7901. T. turnerae is a marine gamma proteobacterium that occurs as an intracellular endosymbiont in the gills of wood-boring marine bivalves of the family Teredinidae (shipworms). This species is the sole cultivated member of an endosymbiotic consortium thought to provide the host with enzymes, including cellulases and nitrogenase, critical for digestion of wood and supplementation of the host's nitrogen-deficient diet. T. turnerae is closely related to the free-living marine polysaccharide degrading bacterium Saccharophagus degradans str. 2-40 and to as yet uncultivated endosymbionts with which it coexists in shipworm cells. Like S. degradans, the T. turnerae genome encodes a large number of enzymes predicted to be involved in complex polysaccharide degradation (>100). However, unlike S. degradans, which degrades a broad spectrum (>10 classes) of complex plant, fungal and algal polysaccharides, T. turnerae primarily encodes enzymes associated with deconstruction of terrestrial woody plant material. Also unlike S. degradans and many other eubacteria, T. turnerae dedicates a large proportion of its genome to genes predicted to function in secondary metabolism. Despite its intracellular niche, the T. turnerae genome lacks many features associated with obligate intracellular existence (e.g. reduced genome size, reduced %G+C, loss of genes of core metabolism) and displays evidence of adaptations common to free-living bacteria (e.g. defense against bacteriophage infection). These results suggest that T. turnerae is likely a facultative intracellular ensosymbiont whose niche presently includes, or recently included, free-living existence. As such, the T. turnerae genome provides insights into the range of genomic adaptations associated with intracellular endosymbiosis as well as enzymatic mechanisms relevant to the recycling of plant materials in marine environments and the production of cellulose-derived biofuels.
- Published
- 2009
- Full Text
- View/download PDF
5. Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils.
- Author
-
Ward NL, Challacombe JF, Janssen PH, Henrissat B, Coutinho PM, Wu M, Xie G, Haft DH, Sait M, Badger J, Barabote RD, Bradley B, Brettin TS, Brinkac LM, Bruce D, Creasy T, Daugherty SC, Davidsen TM, DeBoy RT, Detter JC, Dodson RJ, Durkin AS, Ganapathy A, Gwinn-Giglio M, Han CS, Khouri H, Kiss H, Kothari SP, Madupu R, Nelson KE, Nelson WC, Paulsen I, Penn K, Ren Q, Rosovitz MJ, Selengut JD, Shrivastava S, Sullivan SA, Tapia R, Thompson LS, Watkins KL, Yang Q, Yu C, Zafar N, Zhou L, and Kuske CR
- Subjects
- Anti-Bacterial Agents biosynthesis, Biological Transport, Carbohydrate Metabolism, Cyanobacteria genetics, DNA, Bacterial chemistry, Fungi genetics, Macrolides metabolism, Molecular Sequence Data, Nitrogen metabolism, Phylogeny, Proteobacteria genetics, Sequence Analysis, DNA, Sequence Homology, Bacteria genetics, Bacteria isolation & purification, DNA, Bacterial genetics, Genome, Bacterial, Soil Microbiology
- Abstract
The complete genomes of three strains from the phylum Acidobacteria were compared. Phylogenetic analysis placed them as a unique phylum. They share genomic traits with members of the Proteobacteria, the Cyanobacteria, and the Fungi. The three strains appear to be versatile heterotrophs. Genomic and culture traits indicate the use of carbon sources that span simple sugars to more complex substrates such as hemicellulose, cellulose, and chitin. The genomes encode low-specificity major facilitator superfamily transporters and high-affinity ABC transporters for sugars, suggesting that they are best suited to low-nutrient conditions. They appear capable of nitrate and nitrite reduction but not N(2) fixation or denitrification. The genomes contained numerous genes that encode siderophore receptors, but no evidence of siderophore production was found, suggesting that they may obtain iron via interaction with other microorganisms. The presence of cellulose synthesis genes and a large class of novel high-molecular-weight excreted proteins suggests potential traits for desiccation resistance, biofilm formation, and/or contribution to soil structure. Polyketide synthase and macrolide glycosylation genes suggest the production of novel antimicrobial compounds. Genes that encode a variety of novel proteins were also identified. The abundance of acidobacteria in soils worldwide and the breadth of potential carbon use by the sequenced strains suggest significant and previously unrecognized contributions to the terrestrial carbon cycle. Combining our genomic evidence with available culture traits, we postulate that cells of these isolates are long-lived, divide slowly, exhibit slow metabolic rates under low-nutrient conditions, and are well equipped to tolerate fluctuations in soil hydration.
- Published
- 2009
- Full Text
- View/download PDF
6. Complete genome sequence of the aerobic CO-oxidizing thermophile Thermomicrobium roseum.
- Author
-
Wu D, Raymond J, Wu M, Chatterji S, Ren Q, Graham JE, Bryant DA, Robb F, Colman A, Tallon LJ, Badger JH, Madupu R, Ward NL, and Eisen JA
- Subjects
- Bacteria, Aerobic, Carbon Monoxide metabolism, Chemotaxis genetics, Chloroflexi classification, DNA, Circular, Flagella genetics, Gram-Negative Bacteria, Hot Springs microbiology, Metabolic Networks and Pathways, Photosynthesis, Phylogeny, Sequence Analysis, DNA, Chloroflexi genetics, Genome, Bacterial genetics
- Abstract
In order to enrich the phylogenetic diversity represented in the available sequenced bacterial genomes and as part of an "Assembling the Tree of Life" project, we determined the genome sequence of Thermomicrobium roseum DSM 5159. T. roseum DSM 5159 is a red-pigmented, rod-shaped, Gram-negative extreme thermophile isolated from a hot spring that possesses both an atypical cell wall composition and an unusual cell membrane that is composed entirely of long-chain 1,2-diols. Its genome is composed of two circular DNA elements, one of 2,006,217 bp (referred to as the chromosome) and one of 919,596 bp (referred to as the megaplasmid). Strikingly, though few standard housekeeping genes are found on the megaplasmid, it does encode a complete system for chemotaxis including both chemosensory components and an entire flagellar apparatus. This is the first known example of a complete flagellar system being encoded on a plasmid and suggests a straightforward means for lateral transfer of flagellum-based motility. Phylogenomic analyses support the recent rRNA-based analyses that led to T. roseum being removed from the phylum Thermomicrobia and assigned to the phylum Chloroflexi. Because T. roseum is a deep-branching member of this phylum, analysis of its genome provides insights into the evolution of the Chloroflexi. In addition, even though this species is not photosynthetic, analysis of the genome provides some insight into the origins of photosynthesis in the Chloroflexi. Metabolic pathway reconstructions and experimental studies revealed new aspects of the biology of this species. For example, we present evidence that T. roseum oxidizes CO aerobically, making it the first thermophile known to do so. In addition, we propose that glycosylation of its carotenoids plays a crucial role in the adaptation of the cell membrane to this bacterium's thermophilic lifestyle. Analyses of published metagenomic sequences from two hot springs similar to the one from which this strain was isolated, show that close relatives of T. roseum DSM 5159 are present but have some key differences from the strain sequenced.
- Published
- 2009
- Full Text
- View/download PDF
7. Genome sequence and rapid evolution of the rice pathogen Xanthomonas oryzae pv. oryzae PXO99A.
- Author
-
Salzberg SL, Sommer DD, Schatz MC, Phillippy AM, Rabinowicz PD, Tsuge S, Furutani A, Ochiai H, Delcher AL, Kelley D, Madupu R, Puiu D, Radune D, Shumway M, Trapnell C, Aparna G, Jha G, Pandey A, Patil PB, Ishihara H, Meyer DF, Szurek B, Verdier V, Koebnik R, Dow JM, Ryan RP, Hirata H, Tsuyumu S, Won Lee S, Seo YS, Sriariyanum M, Ronald PC, Sonti RV, Van Sluys MA, Leach JE, White FF, and Bogdanove AJ
- Subjects
- Bacterial Proteins genetics, Base Sequence, DNA Transposable Elements genetics, Gene Duplication, Gene Rearrangement, Gene Transfer, Horizontal, Genomics, Microsatellite Repeats, Reproducibility of Results, Time Factors, Evolution, Molecular, Genome, Bacterial genetics, Oryza microbiology, Xanthomonas genetics
- Abstract
Background: Xanthomonas oryzae pv. oryzae causes bacterial blight of rice (Oryza sativa L.), a major disease that constrains production of this staple crop in many parts of the world. We report here on the complete genome sequence of strain PXO99A and its comparison to two previously sequenced strains, KACC10331 and MAFF311018, which are highly similar to one another., Results: The PXO99A genome is a single circular chromosome of 5,240,075 bp, considerably longer than the genomes of the other strains (4,941,439 bp and 4,940,217 bp, respectively), and it contains 5083 protein-coding genes, including 87 not found in KACC10331 or MAFF311018. PXO99A contains a greater number of virulence-associated transcription activator-like effector genes and has at least ten major chromosomal rearrangements relative to KACC10331 and MAFF311018. PXO99A contains numerous copies of diverse insertion sequence elements, members of which are associated with 7 out of 10 of the major rearrangements. A rapidly-evolving CRISPR (clustered regularly interspersed short palindromic repeats) region contains evidence of dozens of phage infections unique to the PXO99A lineage. PXO99A also contains a unique, near-perfect tandem repeat of 212 kilobases close to the replication terminus., Conclusion: Our results provide striking evidence of genome plasticity and rapid evolution within Xanthomonas oryzae pv. oryzae. The comparisons point to sources of genomic variation and candidates for strain-specific adaptations of this pathogen that help to explain the extraordinary diversity of Xanthomonas oryzae pv. oryzae genotypes and races that have been isolated from around the world.
- Published
- 2008
- Full Text
- View/download PDF
8. Genome sequence of Aeromonas hydrophila ATCC 7966T: jack of all trades.
- Author
-
Seshadri R, Joseph SW, Chopra AK, Sha J, Shaw J, Graf J, Haft D, Wu M, Ren Q, Rosovitz MJ, Madupu R, Tallon L, Kim M, Jin S, Vuong H, Stine OC, Ali A, Horneman AJ, and Heidelberg JF
- Subjects
- Aeromonas hydrophila chemistry, Aeromonas hydrophila enzymology, Arsenates metabolism, Bacterial Proteins genetics, Bacterial Proteins metabolism, Carrier Proteins genetics, Fimbriae, Bacterial genetics, Humans, Molecular Sequence Data, Oxidoreductases genetics, Oxidoreductases metabolism, Phylogeny, Pyrazoles metabolism, Sulfates metabolism, Virulence genetics, Virulence Factors genetics, Aeromonas hydrophila genetics, Genome, Bacterial
- Abstract
The complete genome of Aeromonas hydrophila ATCC 7966(T) was sequenced. Aeromonas, a ubiquitous waterborne bacterium, has been placed by the Environmental Protection Agency on the Contaminant Candidate List because of its potential to cause human disease. The 4.7-Mb genome of this emerging pathogen shows a physiologically adroit organism with broad metabolic capabilities and considerable virulence potential. A large array of virulence genes, including some identified in clinical isolates of Aeromonas spp. or Vibrio spp., may confer upon this organism the ability to infect a wide range of hosts. However, two recognized virulence markers, a type III secretion system and a lateral flagellum, that are reported in other A. hydrophila strains are not identified in the sequenced isolate, ATCC 7966(T). Given the ubiquity and free-living lifestyle of this organism, there is relatively little evidence of fluidity in terms of mobile elements in the genome of this particular strain. Notable aspects of the metabolic repertoire of A. hydrophila include dissimilatory sulfate reduction and resistance mechanisms (such as thiopurine reductase, arsenate reductase, and phosphonate degradation enzymes) against toxic compounds encountered in polluted waters. These enzymes may have bioremediative as well as industrial potential. Thus, the A. hydrophila genome sequence provides valuable insights into its ability to flourish in both aquatic and host environments.
- Published
- 2006
- Full Text
- View/download PDF
9. Evolution of sensory complexity recorded in a myxobacterial genome.
- Author
-
Goldman BS, Nierman WC, Kaiser D, Slater SC, Durkin AS, Eisen JA, Ronning CM, Barbazuk WB, Blanchard M, Field C, Halling C, Hinkle G, Iartchuk O, Kim HS, Mackenzie C, Madupu R, Miller N, Shvartsbeyn A, Sullivan SA, Vaudin M, Wiegand R, and Kaplan HB
- Subjects
- Deltaproteobacteria genetics, Deltaproteobacteria physiology, Molecular Sequence Data, Multigene Family, Myxococcus xanthus growth & development, Myxococcus xanthus physiology, RNA, Ribosomal, 16S genetics, Signal Transduction genetics, Signal Transduction physiology, Evolution, Molecular, Genome, Bacterial, Myxococcus xanthus genetics
- Abstract
Myxobacteria are single-celled, but social, eubacterial predators. Upon starvation they build multicellular fruiting bodies using a developmental program that progressively changes the pattern of cell movement and the repertoire of genes expressed. Development terminates with spore differentiation and is coordinated by both diffusible and cell-bound signals. The growth and development of Myxococcus xanthus is regulated by the integration of multiple signals from outside the cells with physiological signals from within. A collection of M. xanthus cells behaves, in many respects, like a multicellular organism. For these reasons M. xanthus offers unparalleled access to a regulatory network that controls development and that organizes cell movement on surfaces. The genome of M. xanthus is large (9.14 Mb), considerably larger than the other sequenced delta-proteobacteria. We suggest that gene duplication and divergence were major contributors to genomic expansion from its progenitor. More than 1,500 duplications specific to the myxobacterial lineage were identified, representing >15% of the total genes. Genes were not duplicated at random; rather, genes for cell-cell signaling, small molecule sensing, and integrative transcription control were amplified selectively. Families of genes encoding the production of secondary metabolites are overrepresented in the genome but may have been received by horizontal gene transfer and are likely to be important for predation.
- Published
- 2006
- Full Text
- View/download PDF
10. Comparative genomic evidence for a close relationship between the dimorphic prosthecate bacteria Hyphomonas neptunium and Caulobacter crescentus.
- Author
-
Badger JH, Hoover TR, Brun YV, Weiner RM, Laub MT, Alexandre G, Mrázek J, Ren Q, Paulsen IT, Nelson KE, Khouri HM, Radune D, Sosa J, Dodson RJ, Sullivan SA, Rosovitz MJ, Madupu R, Brinkac LM, Durkin AS, Daugherty SC, Kothari SP, Giglio MG, Zhou L, Haft DH, Selengut JD, Davidsen TM, Yang Q, Zafar N, and Ward NL
- Subjects
- Alphaproteobacteria cytology, Alphaproteobacteria physiology, Bacterial Outer Membrane Proteins genetics, Caulobacter crescentus cytology, Caulobacter crescentus physiology, Cell Cycle genetics, Chemotaxis genetics, Chemotaxis physiology, DNA, Bacterial chemistry, DNA, Bacterial genetics, Flagella physiology, Microbial Viability, Molecular Sequence Data, Movement, Sequence Analysis, DNA, Sequence Homology, Signal Transduction, Alphaproteobacteria genetics, Caulobacter crescentus genetics, Genome, Bacterial
- Abstract
The dimorphic prosthecate bacteria (DPB) are alpha-proteobacteria that reproduce in an asymmetric manner rather than by binary fission and are of interest as simple models of development. Prior to this work, the only member of this group for which genome sequence was available was the model freshwater organism Caulobacter crescentus. Here we describe the genome sequence of Hyphomonas neptunium, a marine member of the DPB that differs from C. crescentus in that H. neptunium uses its stalk as a reproductive structure. Genome analysis indicates that this organism shares more genes with C. crescentus than it does with Silicibacter pomeroyi (a closer relative according to 16S rRNA phylogeny), that it relies upon a heterotrophic strategy utilizing a wide range of substrates, that its cell cycle is likely to be regulated in a similar manner to that of C. crescentus, and that the outer membrane complements of H. neptunium and C. crescentus are remarkably similar. H. neptunium swarmer cells are highly motile via a single polar flagellum. With the exception of cheY and cheR, genes required for chemotaxis were absent in the H. neptunium genome. Consistent with this observation, H. neptunium swarmer cells did not respond to any chemotactic stimuli that were tested, which suggests that H. neptunium motility is a random dispersal mechanism for swarmer cells rather than a stimulus-controlled navigation system for locating specific environments. In addition to providing insights into bacterial development, the H. neptunium genome will provide an important resource for the study of other interesting biological processes including chromosome segregation, polar growth, and cell aging.
- Published
- 2006
- Full Text
- View/download PDF
11. Genome sequence of Synechococcus CC9311: Insights into adaptation to a coastal environment.
- Author
-
Palenik B, Ren Q, Dupont CL, Myers GS, Heidelberg JF, Badger JH, Madupu R, Nelson WC, Brinkac LM, Dodson RJ, Durkin AS, Daugherty SC, Sullivan SA, Khouri H, Mohamoud Y, Halpin R, and Paulsen IT
- Subjects
- Base Pairing, Base Sequence, Chromosomes, Bacterial, Frameshift Mutation, Models, Biological, Molecular Sequence Data, Open Reading Frames, Operon, Phylogeny, Point Mutation, RNA, Transfer, Adaptation, Physiological, Environment, Genome, Bacterial, Synechococcus genetics, Synechococcus physiology
- Abstract
Coastal aquatic environments are typically more highly productive and dynamic than open ocean ones. Despite these differences, cyanobacteria from the genus Synechococcus are important primary producers in both types of ecosystems. We have found that the genome of a coastal cyanobacterium, Synechococcus sp. strain CC9311, has significant differences from an open ocean strain, Synechococcus sp. strain WH8102, and these are consistent with the differences between their respective environments. CC9311 has a greater capacity to sense and respond to changes in its (coastal) environment. It has a much larger capacity to transport, store, use, or export metals, especially iron and copper. In contrast, phosphate acquisition seems less important, consistent with the higher concentration of phosphate in coastal environments. CC9311 is predicted to have differences in its outer membrane lipopolysaccharide, and this may be characteristic of the speciation of some cyanobacterial groups. In addition, the types of potentially horizontally transferred genes are markedly different between the coastal and open ocean genomes and suggest a more prominent role for phages in horizontal gene transfer in oligotrophic environments.
- Published
- 2006
- Full Text
- View/download PDF
12. Skewed genomic variability in strains of the toxigenic bacterial pathogen, Clostridium perfringens.
- Author
-
Myers GS, Rasko DA, Cheung JK, Ravel J, Seshadri R, DeBoy RT, Ren Q, Varga J, Awad MM, Brinkac LM, Daugherty SC, Haft DH, Dodson RJ, Madupu R, Nelson WC, Rosovitz MJ, Sullivan SA, Khouri H, Dimitrov GI, Watkins KL, Mulligan S, Benton J, Radune D, Fisher DJ, Atkins HS, Hiscox T, Jost BH, Billington SJ, Songer JG, McClane BA, Titball RW, Rood JI, Melville SB, and Paulsen IT
- Subjects
- Bacterial Toxins, Base Sequence, DNA, Bacterial, Molecular Sequence Data, Polymerase Chain Reaction, Clostridium perfringens genetics, Genome, Bacterial
- Abstract
Clostridium perfringens is a Gram-positive, anaerobic spore-forming bacterium commonly found in soil, sediments, and the human gastrointestinal tract. C. perfringens is responsible for a wide spectrum of disease, including food poisoning, gas gangrene (clostridial myonecrosis), enteritis necroticans, and non-foodborne gastrointestinal infections. The complete genome sequences of Clostridium perfringens strain ATCC 13124, a gas gangrene isolate and the species type strain, and the enterotoxin-producing food poisoning strain SM101, were determined and compared with the published C. perfringens strain 13 genome. Comparison of the three genomes revealed considerable genomic diversity with >300 unique "genomic islands" identified, with the majority of these islands unusually clustered on one replichore. PCR-based analysis indicated that the large genomic islands are widely variable across a large collection of C. perfringens strains. These islands encode genes that correlate to differences in virulence and phenotypic characteristics of these strains. Significant differences between the strains include numerous novel mobile elements and genes encoding metabolic capabilities, strain-specific extracellular polysaccharide capsule, sporulation factors, toxins, and other secreted enzymes, providing substantial insight into this medically important bacterial pathogen.
- Published
- 2006
- Full Text
- View/download PDF
13. Life in hot carbon monoxide: the complete genome sequence of Carboxydothermus hydrogenoformans Z-2901.
- Author
-
Wu M, Ren Q, Durkin AS, Daugherty SC, Brinkac LM, Dodson RJ, Madupu R, Sullivan SA, Kolonay JF, Haft DH, Nelson WC, Tallon LJ, Jones KM, Ulrich LE, Gonzalez JM, Zhulin IB, Robb FT, and Eisen JA
- Subjects
- Base Sequence, Genes, Bacterial, Genomics, Hot Temperature, Models, Biological, Molecular Sequence Data, Oxidative Stress, Sequence Analysis, DNA, Carbon Monoxide chemistry, Genome, Bacterial, Peptococcaceae genetics
- Abstract
We report here the sequencing and analysis of the genome of the thermophilic bacterium Carboxydothermus hydrogenoformans Z-2901. This species is a model for studies of hydrogenogens, which are diverse bacteria and archaea that grow anaerobically utilizing carbon monoxide (CO) as their sole carbon source and water as an electron acceptor, producing carbon dioxide and hydrogen as waste products. Organisms that make use of CO do so through carbon monoxide dehydrogenase complexes. Remarkably, analysis of the genome of C. hydrogenoformans reveals the presence of at least five highly differentiated anaerobic carbon monoxide dehydrogenase complexes, which may in part explain how this species is able to grow so much more rapidly on CO than many other species. Analysis of the genome also has provided many general insights into the metabolism of this organism which should make it easier to use it as a source of biologically produced hydrogen gas. One surprising finding is the presence of many genes previously found only in sporulating species in the Firmicutes Phylum. Although this species is also a Firmicutes, it was not known to sporulate previously. Here we show that it does sporulate and because it is missing many of the genes involved in sporulation in other species, this organism may serve as a "minimal" model for sporulation studies. In addition, using phylogenetic profile analysis, we have identified many uncharacterized gene families found in all known sporulating Firmicutes, but not in any non-sporulating bacteria, including a sigma factor not known to be involved in sporulation previously., Competing Interests: Competing interests. The authors have declared that no competing interests exist.
- Published
- 2005
- Full Text
- View/download PDF
14. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial "pan-genome".
- Author
-
Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, Ward NL, Angiuoli SV, Crabtree J, Jones AL, Durkin AS, Deboy RT, Davidsen TM, Mora M, Scarselli M, Margarit y Ros I, Peterson JD, Hauser CR, Sundaram JP, Nelson WC, Madupu R, Brinkac LM, Dodson RJ, Rosovitz MJ, Sullivan SA, Daugherty SC, Haft DH, Selengut J, Gwinn ML, Zhou L, Zafar N, Khouri H, Radune D, Dimitrov G, Watkins K, O'Connor KJ, Smith S, Utterback TR, White O, Rubens CE, Grandi G, Madoff LC, Kasper DL, Telford JL, Wessels MR, Rappuoli R, and Fraser CM
- Subjects
- Amino Acid Sequence, Bacterial Capsules genetics, Base Sequence, Gene Expression, Genes, Bacterial, Genetic Variation, Molecular Sequence Data, Phylogeny, Sequence Alignment, Sequence Analysis, DNA, Streptococcus agalactiae pathogenicity, Virulence genetics, Genome, Bacterial, Streptococcus agalactiae classification, Streptococcus agalactiae genetics
- Abstract
The development of efficient and inexpensive genome sequencing methods has revolutionized the study of human bacterial pathogens and improved vaccine design. Unfortunately, the sequence of a single genome does not reflect how genetic variability drives pathogenesis within a bacterial species and also limits genome-wide screens for vaccine candidates or for antimicrobial targets. We have generated the genomic sequence of six strains representing the five major disease-causing serotypes of Streptococcus agalactiae, the main cause of neonatal infection in humans. Analysis of these genomes and those available in databases showed that the S. agalactiae species can be described by a pan-genome consisting of a core genome shared by all isolates, accounting for approximately 80% of any single genome, plus a dispensable genome consisting of partially shared and strain-specific genes. Mathematical extrapolation of the data suggests that the gene reservoir available for inclusion in the S. agalactiae pan-genome is vast and that unique genes will continue to be identified even after sequencing hundreds of genomes.
- Published
- 2005
- Full Text
- View/download PDF
15. Whole-genome sequence analysis of Pseudomonas syringae pv. phaseolicola 1448A reveals divergence among pathovars in genes involved in virulence and transposition.
- Author
-
Joardar V, Lindeberg M, Jackson RW, Selengut J, Dodson R, Brinkac LM, Daugherty SC, Deboy R, Durkin AS, Giglio MG, Madupu R, Nelson WC, Rosovitz MJ, Sullivan S, Crabtree J, Creasy T, Davidsen T, Haft DH, Zafar N, Zhou L, Halpin R, Holley T, Khouri H, Feldblyum T, White O, Fraser CM, Chatterjee AK, Cartinhour S, Schneider DJ, Mansfield J, Collmer A, and Buell CR
- Subjects
- Bacterial Proteins genetics, Bacterial Proteins physiology, DNA, Bacterial chemistry, DNA, Bacterial genetics, Molecular Sequence Data, Pseudomonas syringae classification, Pseudomonas syringae pathogenicity, Pseudomonas syringae physiology, Species Specificity, Virulence, Genes, Bacterial, Genome, Bacterial, Pseudomonas syringae genetics
- Abstract
Pseudomonas syringae pv. phaseolicola, a gram-negative bacterial plant pathogen, is the causal agent of halo blight of bean. In this study, we report on the genome sequence of P. syringae pv. phaseolicola isolate 1448A, which encodes 5,353 open reading frames (ORFs) on one circular chromosome (5,928,787 bp) and two plasmids (131,950 bp and 51,711 bp). Comparative analyses with a phylogenetically divergent pathovar, P. syringae pv. tomato DC3000, revealed a strong degree of conservation at the gene and genome levels. In total, 4,133 ORFs were identified as putative orthologs in these two pathovars using a reciprocal best-hit method, with 3,941 ORFs present in conserved, syntenic blocks. Although these two pathovars are highly similar at the physiological level, they have distinct host ranges; 1448A causes disease in beans, and DC3000 is pathogenic on tomato and Arabidopsis. Examination of the complement of ORFs encoding virulence, fitness, and survival factors revealed a substantial, but not complete, overlap between these two pathovars. Another distinguishing feature between the two pathovars is their distinctive sets of transposable elements. With access to a fifth complete pseudomonad genome sequence, we were able to identify 3,567 ORFs that likely comprise the core Pseudomonas genome and 365 ORFs that are P. syringae specific.
- Published
- 2005
- Full Text
- View/download PDF
16. The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses.
- Author
-
Methé BA, Nelson KE, Deming JW, Momen B, Melamud E, Zhang X, Moult J, Madupu R, Nelson WC, Dodson RJ, Brinkac LM, Daugherty SC, Durkin AS, DeBoy RT, Kolonay JF, Sullivan SA, Zhou L, Davidsen TM, Wu M, Huston AL, Lewis M, Weaver B, Weidman JF, Khouri H, Utterback TR, Feldblyum TV, and Fraser CM
- Subjects
- Amino Acids analysis, Bacterial Proteins chemistry, Bacterial Proteins genetics, Carbon metabolism, DNA, Bacterial chemistry, DNA, Bacterial genetics, Energy Metabolism, Genomics, Marine Biology, Membrane Fluidity, Models, Biological, Molecular Sequence Data, Nitrogen metabolism, Proteomics, Species Specificity, Cold Climate, Gammaproteobacteria genetics, Gammaproteobacteria metabolism, Genome, Bacterial
- Abstract
The completion of the 5,373,180-bp genome sequence of the marine psychrophilic bacterium Colwellia psychrerythraea 34H, a model for the study of life in permanently cold environments, reveals capabilities important to carbon and nutrient cycling, bioremediation, production of secondary metabolites, and cold-adapted enzymes. From a genomic perspective, cold adaptation is suggested in several broad categories involving changes to the cell membrane fluidity, uptake and synthesis of compounds conferring cryotolerance, and strategies to overcome temperature-dependent barriers to carbon uptake. Modeling of three-dimensional protein homology from bacteria representing a range of optimal growth temperatures suggests changes to proteome composition that may enhance enzyme effectiveness at low temperatures. Comparative genome analyses suggest that the psychrophilic lifestyle is most likely conferred not by a unique set of genes but by a collection of synergistic changes in overall genome content and amino acid composition.
- Published
- 2005
- Full Text
- View/download PDF
17. Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5.
- Author
-
Paulsen IT, Press CM, Ravel J, Kobayashi DY, Myers GS, Mavrodi DV, DeBoy RT, Seshadri R, Ren Q, Madupu R, Dodson RJ, Durkin AS, Brinkac LM, Daugherty SC, Sullivan SA, Rosovitz MJ, Gwinn ML, Zhou L, Schneider DJ, Cartinhour SW, Nelson WC, Weidman J, Watkins K, Tran K, Khouri H, Pierson EA, Pierson LS 3rd, Thomashow LS, and Loper JE
- Subjects
- Base Sequence, Biological Transport genetics, Genes, Bacterial, Molecular Sequence Data, Multigene Family, Plants microbiology, Pseudomonas fluorescens metabolism, Sequence Analysis, DNA, Siderophores biosynthesis, Siderophores genetics, Genome, Bacterial, Pseudomonas fluorescens genetics
- Abstract
Pseudomonas fluorescens Pf-5 is a plant commensal bacterium that inhabits the rhizosphere and produces secondary metabolites that suppress soilborne plant pathogens. The complete sequence of the 7.1-Mb Pf-5 genome was determined. We analyzed repeat sequences to identify genomic islands that, together with other approaches, suggested P. fluorescens Pf-5's recent lateral acquisitions include six secondary metabolite gene clusters, seven phage regions and a mobile genomic island. We identified various features that contribute to its commensal lifestyle on plants, including broad catabolic and transport capabilities for utilizing plant-derived compounds, the apparent ability to use a diversity of iron siderophores, detoxification systems to protect from oxidative stress, and the lack of a type III secretion system and toxins found in related pathogens. In addition to six known secondary metabolites produced by P. fluorescens Pf-5, three novel secondary metabolite biosynthesis gene clusters were also identified that may contribute to the biocontrol properties of P. fluorescens Pf-5.
- Published
- 2005
- Full Text
- View/download PDF
18. Insights on evolution of virulence and resistance from the complete genome analysis of an early methicillin-resistant Staphylococcus aureus strain and a biofilm-producing methicillin-resistant Staphylococcus epidermidis strain.
- Author
-
Gill SR, Fouts DE, Archer GL, Mongodin EF, Deboy RT, Ravel J, Paulsen IT, Kolonay JF, Brinkac L, Beanan M, Dodson RJ, Daugherty SC, Madupu R, Angiuoli SV, Durkin AS, Haft DH, Vamathevan J, Khouri H, Utterback T, Lee C, Dimitrov G, Jiang L, Qin H, Weidman J, Tran K, Kang K, Hance IR, Nelson KE, and Fraser CM
- Subjects
- Biofilms, Chromosome Mapping, Gene Transfer, Horizontal, Genomic Islands, Molecular Sequence Data, Open Reading Frames, Phylogeny, Staphylococcus aureus metabolism, Staphylococcus aureus pathogenicity, Staphylococcus epidermidis metabolism, Staphylococcus epidermidis pathogenicity, Virulence genetics, Evolution, Molecular, Genome, Bacterial, Methicillin Resistance genetics, Staphylococcus aureus genetics, Staphylococcus epidermidis genetics
- Abstract
Staphylococcus aureus is an opportunistic pathogen and the major causative agent of numerous hospital- and community-acquired infections. Staphylococcus epidermidis has emerged as a causative agent of infections often associated with implanted medical devices. We have sequenced the approximately 2.8-Mb genome of S. aureus COL, an early methicillin-resistant isolate, and the approximately 2.6-Mb genome of S. epidermidis RP62a, a methicillin-resistant biofilm isolate. Comparative analysis of these and other staphylococcal genomes was used to explore the evolution of virulence and resistance between these two species. The S. aureus and S. epidermidis genomes are syntenic throughout their lengths and share a core set of 1,681 open reading frames. Genome islands in nonsyntenic regions are the primary source of variations in pathogenicity and resistance. Gene transfer between staphylococci and low-GC-content gram-positive bacteria appears to have shaped their virulence and resistance profiles. Integrated plasmids in S. epidermidis carry genes encoding resistance to cadmium and species-specific LPXTG surface proteins. A novel genome island encodes multiple phenol-soluble modulins, a potential S. epidermidis virulence factor. S. epidermidis contains the cap operon, encoding the polyglutamate capsule, a major virulence factor in Bacillus anthracis. Additional phenotypic differences are likely the result of single nucleotide polymorphisms, which are most numerous in cell envelope proteins. Overall differences in pathogenicity can be attributed to genome islands in S. aureus which encode enterotoxins, exotoxins, leukocidins, and leukotoxins not found in S. epidermidis.
- Published
- 2005
- Full Text
- View/download PDF
19. Genome sequence of the PCE-dechlorinating bacterium Dehalococcoides ethenogenes.
- Author
-
Seshadri R, Adrian L, Fouts DE, Eisen JA, Phillippy AM, Methe BA, Ward NL, Nelson WC, Deboy RT, Khouri HM, Kolonay JF, Dodson RJ, Daugherty SC, Brinkac LM, Sullivan SA, Madupu R, Nelson KE, Kang KH, Impraim M, Tran K, Robinson JM, Forberger HA, Fraser CM, Zinder SH, and Heidelberg JF
- Subjects
- Amino Acids biosynthesis, Biodegradation, Environmental, Gene Duplication, Genes, Bacterial, Hydrogen metabolism, Molecular Sequence Data, Nitrogenase genetics, Nitrogenase metabolism, Operon, Oxidation-Reduction, Oxidoreductases genetics, Oxidoreductases metabolism, Quinones metabolism, Sequence Analysis, DNA, Transcription Factors genetics, Transcription Factors metabolism, Water Pollutants, Chemical metabolism, Chloroflexi genetics, Chloroflexi metabolism, Genome, Bacterial, Tetrachloroethylene metabolism
- Abstract
Dehalococcoides ethenogenes is the only bacterium known to reductively dechlorinate the groundwater pollutants, tetrachloroethene (PCE) and trichloroethene, to ethene. Its 1,469,720-base pair chromosome contains large dynamic duplicated regions and integrated elements. Genes encoding 17 putative reductive dehalogenases, nearly all of which were adjacent to genes for transcription regulators, and five hydrogenase complexes were identified. These findings, plus a limited repertoire of other metabolic modes, indicate that D. ethenogenes is highly evolved to utilize halogenated organic compounds and H2. Diversification of reductive dehalogenase functions appears to have been mediated by recent genetic exchange and amplification. Genome analysis provides insights into the organism's complex nutrient requirements and suggests that an ancestor was a nitrogen-fixing autotroph.
- Published
- 2005
- Full Text
- View/download PDF
20. Major structural differences and novel potential virulence mechanisms from the genomes of multiple campylobacter species.
- Author
-
Fouts DE, Mongodin EF, Mandrell RE, Miller WG, Rasko DA, Ravel J, Brinkac LM, DeBoy RT, Parker CT, Daugherty SC, Dodson RJ, Durkin AS, Madupu R, Sullivan SA, Shetty JU, Ayodeji MA, Shvartsbeyn A, Schatz MC, Badger JH, Fraser CM, and Nelson KE
- Subjects
- Animals, Bacterial Proteins genetics, Bird Diseases microbiology, Birds, Campylobacter classification, Cattle, Cattle Diseases microbiology, Likelihood Functions, Molecular Sequence Data, Phylogeny, Sequence Alignment, Sequence Homology, Amino Acid, Swine, Swine Diseases microbiology, Campylobacter genetics, Campylobacter pathogenicity, Genome, Bacterial, Virulence genetics
- Abstract
Sequencing and comparative genome analysis of four strains of Campylobacter including C. lari RM2100, C. upsaliensis RM3195, and C. coli RM2228 has revealed major structural differences that are associated with the insertion of phage- and plasmid-like genomic islands, as well as major variations in the lipooligosaccharide complex. Poly G tracts are longer, are greater in number, and show greater variability in C. upsaliensis than in the other species. Many genes involved in host colonization, including racR/S, cadF, cdt, ciaB, and flagellin genes, are conserved across the species, but variations that appear to be species specific are evident for a lipooligosaccharide locus, a capsular (extracellular) polysaccharide locus, and a novel Campylobacter putative licABCD virulence locus. The strains also vary in their metabolic profiles, as well as their resistance profiles to a range of antibiotics. It is evident that the newly identified hypothetical and conserved hypothetical proteins, as well as uncharacterized two-component regulatory systems and membrane proteins, may hold additional significant information on the major differences in virulence among the species, as well as the specificity of the strains for particular hosts.
- Published
- 2005
- Full Text
- View/download PDF
21. Genome sequence of Silicibacter pomeroyi reveals adaptations to the marine environment.
- Author
-
Moran MA, Buchan A, González JM, Heidelberg JF, Whitman WB, Kiene RP, Henriksen JR, King GM, Belas R, Fuqua C, Brinkac L, Lewis M, Johri S, Weaver B, Pai G, Eisen JA, Rahe E, Sheldon WM, Ye W, Miller TR, Carlton J, Rasko DA, Paulsen IT, Ren Q, Daugherty SC, Deboy RT, Dodson RJ, Durkin AS, Madupu R, Nelson WC, Sullivan SA, Rosovitz MJ, Haft DH, Selengut J, and Ward N
- Subjects
- Carrier Proteins genetics, Carrier Proteins metabolism, Genes, Bacterial genetics, Marine Biology, Molecular Sequence Data, Oceans and Seas, Phylogeny, Plankton classification, RNA, Ribosomal, 16S genetics, Roseobacter classification, Adaptation, Physiological genetics, Genome, Bacterial, Plankton genetics, Plankton physiology, Roseobacter genetics, Roseobacter physiology, Seawater microbiology
- Abstract
Since the recognition of prokaryotes as essential components of the oceanic food web, bacterioplankton have been acknowledged as catalysts of most major biogeochemical processes in the sea. Studying heterotrophic bacterioplankton has been challenging, however, as most major clades have never been cultured or have only been grown to low densities in sea water. Here we describe the genome sequence of Silicibacter pomeroyi, a member of the marine Roseobacter clade (Fig. 1), the relatives of which comprise approximately 10-20% of coastal and oceanic mixed-layer bacterioplankton. This first genome sequence from any major heterotrophic clade consists of a chromosome (4,109,442 base pairs) and megaplasmid (491,611 base pairs). Genome analysis indicates that this organism relies upon a lithoheterotrophic strategy that uses inorganic compounds (carbon monoxide and sulphide) to supplement heterotrophy. Silicibacter pomeroyi also has genes advantageous for associations with plankton and suspended particles, including genes for uptake of algal-derived compounds, use of metabolites from reducing microzones, rapid growth and cell-density-dependent regulation. This bacterium has a physiology distinct from that of marine oligotrophs, adding a new strategy to the recognized repertoire for coping with a nutrient-poor ocean.
- Published
- 2004
- Full Text
- View/download PDF
22. Structural flexibility in the Burkholderia mallei genome.
- Author
-
Nierman WC, DeShazer D, Kim HS, Tettelin H, Nelson KE, Feldblyum T, Ulrich RL, Ronning CM, Brinkac LM, Daugherty SC, Davidsen TD, Deboy RT, Dimitrov G, Dodson RJ, Durkin AS, Gwinn ML, Haft DH, Khouri H, Kolonay JF, Madupu R, Mohammoud Y, Nelson WC, Radune D, Romero CM, Sarria S, Selengut J, Shamblin C, Sullivan SA, White O, Yu Y, Zafar N, Zhou L, and Fraser CM
- Subjects
- Animals, Base Composition genetics, Base Sequence, Burkholderia mallei pathogenicity, Chromosomes, Bacterial genetics, Cricetinae, Glanders microbiology, Liver metabolism, Mesocricetus, Molecular Sequence Data, Multigene Family, Oligonucleotide Array Sequence Analysis, Open Reading Frames genetics, Virulence, Burkholderia mallei genetics, Genome, Bacterial
- Abstract
The complete genome sequence of Burkholderia mallei ATCC 23344 provides insight into this highly infectious bacterium's pathogenicity and evolutionary history. B. mallei, the etiologic agent of glanders, has come under renewed scientific investigation as a result of recent concerns about its past and potential future use as a biological weapon. Genome analysis identified a number of putative virulence factors whose function was supported by comparative genome hybridization and expression profiling of the bacterium in hamster liver in vivo. The genome contains numerous insertion sequence elements that have mediated extensive deletions and rearrangements of the genome relative to Burkholderia pseudomallei. The genome also contains a vast number (>12,000) of simple sequence repeats. Variation in simple sequence repeats in key genes can provide a mechanism for generating antigenic variation that may account for the mammalian host's inability to mount a durable adaptive immune response to a B. mallei infection.
- Published
- 2004
- Full Text
- View/download PDF
23. The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough.
- Author
-
Heidelberg JF, Seshadri R, Haveman SA, Hemme CL, Paulsen IT, Kolonay JF, Eisen JA, Ward N, Methe B, Brinkac LM, Daugherty SC, Deboy RT, Dodson RJ, Durkin AS, Madupu R, Nelson WC, Sullivan SA, Fouts D, Haft DH, Selengut J, Peterson JD, Davidsen TM, Zafar N, Zhou L, Radune D, Dimitrov G, Hance M, Tran K, Khouri H, Gill J, Utterback TR, Feldblyum TV, Wall JD, Voordouw G, and Fraser CM
- Subjects
- Desulfovibrio vulgaris metabolism, Energy Metabolism, Molecular Sequence Data, Desulfovibrio vulgaris genetics, Genome, Bacterial
- Abstract
Desulfovibrio vulgaris Hildenborough is a model organism for studying the energy metabolism of sulfate-reducing bacteria (SRB) and for understanding the economic impacts of SRB, including biocorrosion of metal infrastructure and bioremediation of toxic metal ions. The 3,570,858 base pair (bp) genome sequence reveals a network of novel c-type cytochromes, connecting multiple periplasmic hydrogenases and formate dehydrogenases, as a key feature of its energy metabolism. The relative arrangement of genes encoding enzymes for energy transduction, together with inferred cellular location of the enzymes, provides a basis for proposing an expansion to the 'hydrogen-cycling' model for increasing energy efficiency in this bacterium. Plasmid-encoded functions include modification of cell surface components, nitrogen fixation and a type-III protein secretion system. This genome sequence represents a substantial step toward the elucidation of pathways for reduction (and bioremediation) of pollutants such as uranium and chromium and offers a new starting point for defining this organism's complex anaerobic respiration.
- Published
- 2004
- Full Text
- View/download PDF
24. Whole genome comparisons of serotype 4b and 1/2a strains of the food-borne pathogen Listeria monocytogenes reveal new insights into the core genome components of this species.
- Author
-
Nelson KE, Fouts DE, Mongodin EF, Ravel J, DeBoy RT, Kolonay JF, Rasko DA, Angiuoli SV, Gill SR, Paulsen IT, Peterson J, White O, Nelson WC, Nierman W, Beanan MJ, Brinkac LM, Daugherty SC, Dodson RJ, Durkin AS, Madupu R, Haft DH, Selengut J, Van Aken S, Khouri H, Fedorova N, Forberger H, Tran B, Kathariou S, Wonderling LD, Uhlich GA, Bayles DO, Luchansky JB, and Fraser CM
- Subjects
- Base Composition, Chromosomes, Bacterial genetics, DNA Transposable Elements genetics, Genes, Bacterial genetics, Listeria monocytogenes metabolism, Meat microbiology, Open Reading Frames genetics, Physical Chromosome Mapping, Polymorphism, Single Nucleotide genetics, Prophages genetics, Serotyping, Species Specificity, Synteny, Virulence genetics, Food Microbiology, Genome, Bacterial, Genomics, Listeria monocytogenes classification, Listeria monocytogenes genetics
- Abstract
The genomes of three strains of Listeria monocytogenes that have been associated with food-borne illness in the USA were subjected to whole genome comparative analysis. A total of 51, 97 and 69 strain-specific genes were identified in L.monocytogenes strains F2365 (serotype 4b, cheese isolate), F6854 (serotype 1/2a, frankfurter isolate) and H7858 (serotype 4b, meat isolate), respectively. Eighty-three genes were restricted to serotype 1/2a and 51 to serotype 4b strains. These strain- and serotype-specific genes probably contribute to observed differences in pathogenicity, and the ability of the organisms to survive and grow in their respective environmental niches. The serotype 1/2a-specific genes include an operon that encodes the rhamnose biosynthetic pathway that is associated with teichoic acid biosynthesis, as well as operons for five glycosyl transferases and an adenine-specific DNA methyltransferase. A total of 8603 and 105 050 high quality single nucleotide polymorphisms (SNPs) were found on the draft genome sequences of strain H7858 and strain F6854, respectively, when compared with strain F2365. Whole genome comparative analyses revealed that the L.monocytogenes genomes are essentially syntenic, with the majority of genomic differences consisting of phage insertions, transposable elements and SNPs.
- Published
- 2004
- Full Text
- View/download PDF
25. Comparison of the genome of the oral pathogen Treponema denticola with other spirochete genomes.
- Author
-
Seshadri R, Myers GS, Tettelin H, Eisen JA, Heidelberg JF, Dodson RJ, Davidsen TM, DeBoy RT, Fouts DE, Haft DH, Selengut J, Ren Q, Brinkac LM, Madupu R, Kolonay J, Durkin SA, Daugherty SC, Shetty J, Shvartsbeyn A, Gebregeorgis E, Geer K, Tsegaye G, Malek J, Ayodeji B, Shatsman S, McLeod MP, Smajs D, Howell JK, Pal S, Amin A, Vashisth P, McNeill TZ, Xiang Q, Sodergren E, Baca E, Weinstock GM, Norris SJ, Fraser CM, and Paulsen IT
- Subjects
- ATP-Binding Cassette Transporters genetics, Bacterial Proteins genetics, Base Sequence, Borrelia burgdorferi genetics, Borrelia burgdorferi metabolism, Genes, Bacterial genetics, Leptospira interrogans genetics, Leptospira interrogans metabolism, Models, Genetic, Molecular Sequence Data, Sequence Homology, Amino Acid, Treponema metabolism, Treponema pathogenicity, Treponema pallidum genetics, Treponema pallidum metabolism, Genome, Bacterial, Mouth microbiology, Treponema genetics
- Abstract
We present the complete 2,843,201-bp genome sequence of Treponema denticola (ATCC 35405) an oral spirochete associated with periodontal disease. Analysis of the T. denticola genome reveals factors mediating coaggregation, cell signaling, stress protection, and other competitive and cooperative measures, consistent with its pathogenic nature and lifestyle within the mixed-species environment of subgingival dental plaque. Comparisons with previously sequenced spirochete genomes revealed specific factors contributing to differences and similarities in spirochete physiology as well as pathogenic potential. The T. denticola genome is considerably larger in size than the genome of the related syphilis-causing spirochete Treponema pallidum. The differences in gene content appear to be attributable to a combination of three phenomena: genome reduction, lineage-specific expansions, and horizontal gene transfer. Genes lost due to reductive evolution appear to be largely involved in metabolism and transport, whereas some of the genes that have arisen due to lineage-specific expansions are implicated in various pathogenic interactions, and genes acquired via horizontal gene transfer are largely phage-related or of unknown function.
- Published
- 2004
- Full Text
- View/download PDF
26. Genome of Geobacter sulfurreducens: metal reduction in subsurface environments.
- Author
-
Methé BA, Nelson KE, Eisen JA, Paulsen IT, Nelson W, Heidelberg JF, Wu D, Wu M, Ward N, Beanan MJ, Dodson RJ, Madupu R, Brinkac LM, Daugherty SC, DeBoy RT, Durkin AS, Gwinn M, Kolonay JF, Sullivan SA, Haft DH, Selengut J, Davidsen TM, Zafar N, White O, Tran B, Romero C, Forberger HA, Weidman J, Khouri H, Feldblyum TV, Utterback TR, Van Aken SE, Lovley DR, and Fraser CM
- Subjects
- Acetates metabolism, Acetyl Coenzyme A metabolism, Aerobiosis, Anaerobiosis, Bacterial Proteins genetics, Bacterial Proteins metabolism, Carbon metabolism, Chemotaxis, Chromosomes, Bacterial genetics, Cytochromes c genetics, Cytochromes c metabolism, Electron Transport, Energy Metabolism, Genes, Bacterial, Genes, Regulator, Geobacter physiology, Hydrogen metabolism, Movement, Open Reading Frames, Oxidation-Reduction, Phylogeny, Genome, Bacterial, Geobacter genetics, Geobacter metabolism, Metals metabolism
- Abstract
The complete genome sequence of Geobacter sulfurreducens, a delta-proteobacterium, reveals unsuspected capabilities, including evidence of aerobic metabolism, one-carbon and complex carbon metabolism, motility, and chemotactic behavior. These characteristics, coupled with the possession of many two-component sensors and many c-type cytochromes, reveal an ability to create alternative, redundant, electron transport networks and offer insights into the process of metal ion reduction in subsurface environments. As well as playing roles in the global cycling of metals and carbon, this organism clearly has the potential for use in bioremediation of radioactive metals and in the generation of electricity.
- Published
- 2003
- Full Text
- View/download PDF
27. The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000.
- Author
-
Buell CR, Joardar V, Lindeberg M, Selengut J, Paulsen IT, Gwinn ML, Dodson RJ, Deboy RT, Durkin AS, Kolonay JF, Madupu R, Daugherty S, Brinkac L, Beanan MJ, Haft DH, Nelson WC, Davidsen T, Zafar N, Zhou L, Liu J, Yuan Q, Khouri H, Fedorova N, Tran B, Russell D, Berry K, Utterback T, Van Aken SE, Feldblyum TV, D'Ascenzo M, Deng WL, Ramos AR, Alfano JR, Cartinhour S, Chatterjee AK, Delaney TP, Lazarowitz SG, Martin GB, Schneider DJ, Tang X, Bender CL, White O, Fraser CM, and Collmer A
- Subjects
- Base Sequence, Biological Transport, Molecular Sequence Data, Plant Growth Regulators biosynthesis, Plasmids, Pseudomonas metabolism, Pseudomonas pathogenicity, Reactive Oxygen Species, Siderophores biosynthesis, Virulence, Arabidopsis microbiology, Genome, Bacterial, Solanum lycopersicum microbiology, Pseudomonas genetics
- Abstract
We report the complete genome sequence of the model bacterial pathogen Pseudomonas syringae pathovar tomato DC3000 (DC3000), which is pathogenic on tomato and Arabidopsis thaliana. The DC3000 genome (6.5 megabases) contains a circular chromosome and two plasmids, which collectively encode 5,763 ORFs. We identified 298 established and putative virulence genes, including several clusters of genes encoding 31 confirmed and 19 predicted type III secretion system effector proteins. Many of the virulence genes were members of paralogous families and also were proximal to mobile elements, which collectively comprise 7% of the DC3000 genome. The bacterium possesses a large repertoire of transporters for the acquisition of nutrients, particularly sugars, as well as genes implicated in attachment to plant surfaces. Over 12% of the genes are dedicated to regulation, which may reflect the need for rapid adaptation to the diverse environments encountered during epiphytic growth and pathogenesis. Comparative analyses confirmed a high degree of similarity with two sequenced pseudomonads, Pseudomonas putida and Pseudomonas aeruginosa, yet revealed 1,159 genes unique to DC3000, of which 811 lack a known function.
- Published
- 2003
- Full Text
- View/download PDF
28. Complete genome sequence of the Q-fever pathogen Coxiella burnetii.
- Author
-
Seshadri R, Paulsen IT, Eisen JA, Read TD, Nelson KE, Nelson WC, Ward NL, Tettelin H, Davidsen TM, Beanan MJ, Deboy RT, Daugherty SC, Brinkac LM, Madupu R, Dodson RJ, Khouri HM, Lee KH, Carty HA, Scanlan D, Heinzen RA, Thompson HA, Samuel JE, Fraser CM, and Heidelberg JF
- Subjects
- Bacterial Adhesion, Coxiella burnetii physiology, Molecular Sequence Data, Coxiella burnetii genetics, Genome, Bacterial
- Abstract
The 1,995,275-bp genome of Coxiella burnetii, Nine Mile phase I RSA493, a highly virulent zoonotic pathogen and category B bioterrorism agent, was sequenced by the random shotgun method. This bacterium is an obligate intracellular acidophile that is highly adapted for life within the eukaryotic phagolysosome. Genome analysis revealed many genes with potential roles in adhesion, invasion, intracellular trafficking, host-cell modulation, and detoxification. A previously uncharacterized 13-member family of ankyrin repeat-containing proteins is implicated in the pathogenesis of this organism. Although the lifestyle and parasitic strategies of C. burnetii resemble that of Rickettsiae and Chlamydiae, their genome architectures differ considerably in terms of presence of mobile elements, extent of genome reduction, metabolic capabilities, and transporter profiles. The presence of 83 pseudogenes displays an ongoing process of gene degradation. Unlike other obligate intracellular bacteria, 32 insertion sequences are found dispersed in the chromosome, indicating some plasticity in the C. burnetii genome. These analyses suggest that the obligate intracellular lifestyle of C. burnetii may be a relatively recent innovation.
- Published
- 2003
- Full Text
- View/download PDF
29. Role of mobile DNA in the evolution of vancomycin-resistant Enterococcus faecalis.
- Author
-
Paulsen IT, Banerjei L, Myers GS, Nelson KE, Seshadri R, Read TD, Fouts DE, Eisen JA, Gill SR, Heidelberg JF, Tettelin H, Dodson RJ, Umayam L, Brinkac L, Beanan M, Daugherty S, DeBoy RT, Durkin S, Kolonay J, Madupu R, Nelson W, Vamathevan J, Tran B, Upton J, Hansen T, Shetty J, Khouri H, Utterback T, Radune D, Ketchum KA, Dougherty BA, and Fraser CM
- Subjects
- Adhesins, Bacterial genetics, Bacterial Adhesion, Bacterial Proteins genetics, Carrier Proteins genetics, Carrier Proteins metabolism, Chromosomes, Bacterial genetics, Conjugation, Genetic, Conserved Sequence, DNA Transposable Elements, Digestive System microbiology, Drug Resistance, Multiple, Bacterial, Enterococcus faecalis drug effects, Enterococcus faecalis pathogenicity, Enterococcus faecalis physiology, Gene Transfer, Horizontal, Gram-Positive Bacterial Infections microbiology, Humans, Lysogeny, Open Reading Frames, Oxidative Stress, Plasmids, Synteny, Virulence genetics, Virulence Factors genetics, Biological Evolution, Enterococcus faecalis genetics, Genome, Bacterial, Interspersed Repetitive Sequences, Sequence Analysis, DNA, Vancomycin Resistance genetics
- Abstract
The complete genome sequence of Enterococcus faecalis V583, a vancomycin-resistant clinical isolate, revealed that more than a quarter of the genome consists of probable mobile or foreign DNA. One of the predicted mobile elements is a previously unknown vanB vancomycin-resistance conjugative transposon. Three plasmids were identified, including two pheromone-sensing conjugative plasmids, one encoding a previously undescribed pheromone inhibitor. The apparent propensity for the incorporation of mobile elements probably contributed to the rapid acquisition and dissemination of drug resistance in the enterococci.
- Published
- 2003
- Full Text
- View/download PDF
30. Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440.
- Author
-
Nelson KE, Weinel C, Paulsen IT, Dodson RJ, Hilbert H, Martins dos Santos VA, Fouts DE, Gill SR, Pop M, Holmes M, Brinkac L, Beanan M, DeBoy RT, Daugherty S, Kolonay J, Madupu R, Nelson W, White O, Peterson J, Khouri H, Hance I, Chris Lee P, Holtzapple E, Scanlan D, Tran K, Moazzez A, Utterback T, Rizzo M, Lee K, Kosack D, Moestl D, Wedler H, Lauber J, Stjepandic D, Hoheisel J, Straetz M, Heim S, Kiewitz C, Eisen JA, Timmis KN, Düsterhöft A, Tümmler B, and Fraser CM
- Subjects
- Bacterial Proteins genetics, Base Sequence, Genes, Bacterial genetics, Molecular Sequence Data, Phylogeny, Pseudomonas aeruginosa genetics, Pseudomonas aeruginosa metabolism, Pseudomonas putida metabolism, Energy Metabolism, Genome, Bacterial, Open Reading Frames genetics, Pseudomonas putida genetics
- Abstract
Pseudomonas putida is a metabolically versatile saprophytic soil bacterium that has been certified as a biosafety host for the cloning of foreign genes. The bacterium also has considerable potential for biotechnological applications. Sequence analysis of the 6.18 Mb genome of strain KT2440 reveals diverse transport and metabolic systems. Although there is a high level of genome conservation with the pathogenic Pseudomonad Pseudomonas aeruginosa (85% of the predicted coding regions are shared), key virulence factors including exotoxin A and type III secretion systems are absent. Analysis of the genome gives insight into the non-pathogenic nature of P. putida and points to potential new applications in agriculture, biocatalysis, bioremediation and bioplastic production.
- Published
- 2002
- Full Text
- View/download PDF
31. Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis.
- Author
-
Heidelberg JF, Paulsen IT, Nelson KE, Gaidos EJ, Nelson WC, Read TD, Eisen JA, Seshadri R, Ward N, Methe B, Clayton RA, Meyer T, Tsapin A, Scott J, Beanan M, Brinkac L, Daugherty S, DeBoy RT, Dodson RJ, Durkin AS, Haft DH, Kolonay JF, Madupu R, Peterson JD, Umayam LA, White O, Wolf AM, Vamathevan J, Weidman J, Impraim M, Lee K, Berry K, Lee C, Mueller J, Khouri H, Gill J, Utterback TR, McDonald LA, Feldblyum TV, Smith HO, Venter JC, Nealson KH, and Fraser CM
- Subjects
- Amino Acid Sequence, Biodegradation, Environmental, Cell Respiration, Electron Transport, Gene Expression, Metals metabolism, Molecular Sequence Data, Open Reading Frames genetics, Organic Chemicals metabolism, Oxidation-Reduction, Plasmids, Proteomics methods, Sequence Alignment methods, Shewanella classification, Shewanella pathogenicity, Species Specificity, Water Pollutants, Chemical metabolism, Water Purification methods, Gene Expression Regulation, Bacterial, Genome, Bacterial, Sequence Analysis, DNA, Sequence Analysis, Protein, Shewanella genetics, Shewanella metabolism
- Abstract
Shewanella oneidensis is an important model organism for bioremediation studies because of its diverse respiratory capabilities, conferred in part by multicomponent, branched electron transport systems. Here we report the sequencing of the S. oneidensis genome, which consists of a 4,969,803-base pair circular chromosome with 4,758 predicted protein-encoding open reading frames (CDS) and a 161,613-base pair plasmid with 173 CDSs. We identified the first Shewanella lambda-like phage, providing a potential tool for further genome engineering. Genome analysis revealed 39 c-type cytochromes, including 32 previously unidentified in S. oneidensis, and a novel periplasmic [Fe] hydrogenase, which are integral members of the electron transport system. This genome sequence represents a critical step in the elucidation of the pathways for reduction (and bioremediation) of pollutants such as uranium (U) and chromium (Cr), and offers a starting point for defining this organism's complex electron transport systems and metal ion-reducing capabilities.
- Published
- 2002
- Full Text
- View/download PDF
32. The Brucella suis genome reveals fundamental similarities between animal and plant pathogens and symbionts.
- Author
-
Paulsen IT, Seshadri R, Nelson KE, Eisen JA, Heidelberg JF, Read TD, Dodson RJ, Umayam L, Brinkac LM, Beanan MJ, Daugherty SC, Deboy RT, Durkin AS, Kolonay JF, Madupu R, Nelson WC, Ayodeji B, Kraul M, Shetty J, Malek J, Van Aken SE, Riedmuller S, Tettelin H, Gill SR, White O, Salzberg SL, Hoover DL, Lindler LE, Halling SM, Boyle SM, and Fraser CM
- Subjects
- Alphaproteobacteria genetics, Brucella pathogenicity, Brucella melitensis genetics, Chromosomes, Bacterial ultrastructure, DNA Transposable Elements, Models, Genetic, Molecular Sequence Data, Open Reading Frames, Rhizobium genetics, Brucella genetics, Genome, Bacterial
- Abstract
The 3.31-Mb genome sequence of the intracellular pathogen and potential bioterrorism agent, Brucella suis, was determined. Comparison of B. suis with Brucella melitensis has defined a finite set of differences that could be responsible for the differences in virulence and host preference between these organisms, and indicates that phage have played a significant role in their divergence. Analysis of the B. suis genome reveals transport and metabolic capabilities akin to soil/plant-associated bacteria. Extensive gene synteny between B. suis chromosome 1 and the genome of the plant symbiont Mesorhizobium loti emphasizes the similarity between this animal pathogen and plant pathogens and symbionts. A limited repertoire of genes homologous to known bacterial virulence factors were identified.
- Published
- 2002
- Full Text
- View/download PDF
33. Complete genome sequence and comparative genomic analysis of an emerging human pathogen, serotype V Streptococcus agalactiae.
- Author
-
Tettelin H, Masignani V, Cieslewicz MJ, Eisen JA, Peterson S, Wessels MR, Paulsen IT, Nelson KE, Margarit I, Read TD, Madoff LC, Wolf AM, Beanan MJ, Brinkac LM, Daugherty SC, DeBoy RT, Durkin AS, Kolonay JF, Madupu R, Lewis MR, Radune D, Fedorova NB, Scanlan D, Khouri H, Mulligan S, Carty HA, Cline RT, Van Aken SE, Gill J, Scarselli M, Mora M, Iacobini ET, Brettoni C, Galli G, Mariani M, Vegni F, Maione D, Rinaudo D, Rappuoli R, Telford JL, Kasper DL, Grandi G, and Fraser CM
- Subjects
- Amino Acid Sequence, Biological Evolution, Humans, Molecular Sequence Data, Oligonucleotide Array Sequence Analysis, Phylogeny, Serotyping, Species Specificity, Streptococcal Infections microbiology, Streptococcus agalactiae classification, Streptococcus pneumoniae genetics, Streptococcus pyogenes genetics, Virulence genetics, Genome, Bacterial, Streptococcus agalactiae genetics, Streptococcus agalactiae pathogenicity
- Abstract
The 2,160,267 bp genome sequence of Streptococcus agalactiae, the leading cause of bacterial sepsis, pneumonia, and meningitis in neonates in the U.S. and Europe, is predicted to encode 2,175 genes. Genome comparisons among S. agalactiae, Streptococcus pneumoniae, Streptococcus pyogenes, and the other completely sequenced genomes identified genes specific to the streptococci and to S. agalactiae. These in silico analyses, combined with comparative genome hybridization experiments between the sequenced serotype V strain 2603 V/R and 19 S. agalactiae strains from several serotypes using whole-genome microarrays, revealed the genetic heterogeneity among S. agalactiae strains, even of the same serotype, and provided insights into the evolution of virulence mechanisms.
- Published
- 2002
- Full Text
- View/download PDF
34. Insights on evolution of virulence and resistance from the complete genome analysis of an early methicillin-resistant Staphylococcus aureus strain and a biofilm-producing methicillin-resistant Staphylococcus epidermidis strain
- Author
-
Robert J. Dodson, Lingxia Jiang, Chris Lee, Claire M. Fraser, Derrick E. Fouts, Daniel H. Haft, Sean C. Daugherty, Jacques Ravel, Haiying Qin, Steven R. Gill, Ioana R. Hance, Mauren Beanan, George Dimitrov, A. Scott Durkin, Ian T. Paulsen, Jessica Vamathevan, James F. Kolonay, Karen E. Nelson, Emmanuel F. Mongodin, Kevin Tran, Kathy Kang, T. Utterback, Samuel V. Angiuoli, Gordon L. Archer, Robert T. DeBoy, Lauren M. Brinkac, Jan Weidman, R. Madupu, and H. Khouri
- Subjects
Staphylococcus aureus ,Gene Transfer, Horizontal ,Genomic Islands ,Genomics and Proteomics ,Molecular Sequence Data ,Virulence ,Biology ,medicine.disease_cause ,Microbiology ,Genome ,Virulence factor ,Evolution, Molecular ,Open Reading Frames ,Staphylococcus epidermidis ,medicine ,Molecular Biology ,Phylogeny ,Polyglutamate ,Methicillin-resistant Staphylococcus epidermidis ,Chromosome Mapping ,biology.organism_classification ,Methicillin-resistant Staphylococcus aureus ,Biofilms ,Methicillin Resistance ,Genome, Bacterial - Abstract
Staphylococcus aureus is an opportunistic pathogen and the major causative agent of numerous hospital- and community-acquired infections. Staphylococcus epidermidis has emerged as a causative agent of infections often associated with implanted medical devices. We have sequenced the ∼2.8-Mb genome of S. aureus COL, an early methicillin-resistant isolate, and the ∼2.6-Mb genome of S. epidermidis RP62a, a methicillin-resistant biofilm isolate. Comparative analysis of these and other staphylococcal genomes was used to explore the evolution of virulence and resistance between these two species. The S. aureus and S. epidermidis genomes are syntenic throughout their lengths and share a core set of 1,681 open reading frames. Genome islands in nonsyntenic regions are the primary source of variations in pathogenicity and resistance. Gene transfer between staphylococci and low-GC-content gram-positive bacteria appears to have shaped their virulence and resistance profiles. Integrated plasmids in S. epidermidis carry genes encoding resistance to cadmium and species-specific LPXTG surface proteins. A novel genome island encodes multiple phenol-soluble modulins, a potential S. epidermidis virulence factor. S. epidermidis contains the cap operon, encoding the polyglutamate capsule, a major virulence factor in Bacillus anthracis . Additional phenotypic differences are likely the result of single nucleotide polymorphisms, which are most numerous in cell envelope proteins. Overall differences in pathogenicity can be attributed to genome islands in S. aureus which encode enterotoxins, exotoxins, leukocidins, and leukotoxins not found in S. epidermidis .
- Published
- 2005
35. Genome of Geobacter sulfurreducens: metal reduction in subsurface environments
- Author
-
Bao Tran, Jeremy D. Selengut, H. Khouri, R. Madupu, S. van Aken, Nikhat Zafar, Sean C. Daugherty, Lauren M. Brinkac, Ian T. Paulsen, James F. Kolonay, T. Utterback, John F. Heidelberg, Michelle L. Gwinn, Dongying Wu, Robert T. DeBoy, Tanja M. Davidsen, Tamara Feldblyum, Daniel H. Haft, Claudia M. Romero, J. Weidman, Karen E. Nelson, Naomi L. Ward, Derek R. Lovley, William C. Nelson, Claire M. Fraser, Jonathan A. Eisen, Robert J. Dodson, Martin Wu, Barbara A. Methé, Maureen J. Beanan, Owen White, Heather Forberger, Steven A. Sullivan, and Anthony S. Durkin
- Subjects
Movement ,chemistry.chemical_element ,Computational biology ,Acetates ,Genome ,Metal ,Electron Transport ,Open Reading Frames ,Bioremediation ,Bacterial Proteins ,Acetyl Coenzyme A ,Genes, Regulator ,Anaerobiosis ,Geobacter sulfurreducens ,Organism ,Phylogeny ,Multidisciplinary ,biology ,Ecology ,Chemotaxis ,Cytochromes c ,Chromosomes, Bacterial ,biology.organism_classification ,Electron transport chain ,Aerobiosis ,Carbon ,chemistry ,Genes, Bacterial ,Metals ,visual_art ,visual_art.visual_art_medium ,Energy Metabolism ,Geobacter ,Oxidation-Reduction ,Genome, Bacterial ,Hydrogen - Abstract
The complete genome sequence of Geobacter sulfurreducens , a δ-proteobacterium, reveals unsuspected capabilities, including evidence of aerobic metabolism, one-carbon and complex carbon metabolism, motility, and chemotactic behavior. These characteristics, coupled with the possession of many two-component sensors and many c-type cytochromes, reveal an ability to create alternative, redundant, electron transport networks and offer insights into the process of metal ion reduction in subsurface environments. As well as playing roles in the global cycling of metals and carbon, this organism clearly has the potential for use in bioremediation of radioactive metals and in the generation of electricity.
- Published
- 2003
36. Role of mobile DNA in the evolution of vancomycin-resistant Enterococcus faecalis
- Author
-
R. Madupu, Sean C. Daugherty, William C. Nelson, J. Upton, Scott Durkin, James F. Kolonay, L. Banerjei, Robert J. Dodson, John F. Heidelberg, Steven R. Gill, Ian T. Paulsen, Derrick E. Fouts, Lowell Umayam, Garry S. A. Myers, Brian Dougherty, Robert T. DeBoy, Jessica Vamathevan, Rekha Seshadri, T. Utterback, Karen E. Nelson, K. A. Ketchum, T. Hansen, Jonathan A. Eisen, Lauren M. Brinkac, Bao Tran, H Tettelin, H. Khouri, Jyoti Shetty, Claire M. Fraser, Timothy D. Read, Maureen J. Beanan, and Diana Radune
- Subjects
Transposable element ,Gene Transfer, Horizontal ,General Science & Technology ,Virulence Factors ,Biology ,Genome ,Synteny ,Enterococcus faecalis ,Bacterial Adhesion ,Microbiology ,Open Reading Frames ,Plasmid ,Bacterial Proteins ,Lysogenic cycle ,Drug Resistance, Multiple, Bacterial ,Humans ,Adhesins, Bacterial ,Lysogeny ,Gram-Positive Bacterial Infections ,Conserved Sequence ,Genetics ,Whole genome sequencing ,Multidisciplinary ,Virulence ,Nucleic acid sequence ,Vancomycin Resistance ,Sequence Analysis, DNA ,biochemical phenomena, metabolism, and nutrition ,Chromosomes, Bacterial ,biology.organism_classification ,Biological Evolution ,Interspersed Repetitive Sequences ,Oxidative Stress ,Conjugation, Genetic ,DNA Transposable Elements ,Mobile genetic elements ,Carrier Proteins ,Digestive System ,Genome, Bacterial ,Plasmids - Abstract
The complete genome sequence of Enterococcus faecalis V583, a vancomycin-resistant clinical isolate, revealed that more than a quarter of the genome consists of probable mobile or foreign DNA. One of the predicted mobile elements is a previously unknown vanB vancomycin-resistance conjugative transposon. Three plasmids were identified, including two pheromone-sensing conjugative plasmids, one encoding a previously undescribed pheromone inhibitor. The apparent propensity for the incorporation of mobile elements probably contributed to the rapid acquisition and dissemination of drug resistance in the enterococci.
- Published
- 2003
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.