1. On genome rearrangement models
- Author
-
Feijão, Pedro Cipriano, 1975, Meidanis, João, 1960, Figueiredo, Celina Miraglia Herrera de, Sankoff, David, Meyer, João Frederico da Costa Azevedo, Dias, Zanoni, Universidade Estadual de Campinas. Instituto de Computação, Programa de Pós-Graduação em Ciência da Computação, and UNIVERSIDADE ESTADUAL DE CAMPINAS
- Subjects
Computational biology ,Permutation groups ,Grupos de permutação ,Bioinformatics ,Bioinformática ,Genomes ,Molecular evolution - Computer simulation ,Biologia computacional ,Evolução molecular - Simulação por computador ,Genomas - Abstract
Orientador: João Meidanis Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Computação Resumo: Rearranjo de genomas é o nome dado a eventos onde grandes blocos de DNA trocam de posição durante o processo evolutivo. Com a crescente disponibilidade de sequências completas de DNA, a análise desse tipo de eventos pode ser uma importante ferramenta para o entendimento da genômica evolutiva. Vários modelos matemáticos de rearranjo de genomas foram propostos ao longo dos últimos vinte anos. Nesta tese, desenvolvemos dois novos modelos. O primeiro foi proposto como uma definição alternativa ao conceito de distância de breakpoint. Essa distância é uma das mais simples medidas de rearranjo, mas ainda não há um consenso quanto à sua definição para o caso de genomas multi-cromossomais. Pevzner e Tesler deram uma definição em 2003 e Tannier et al. a definiram de forma diferente em 2008. Nesta tese, nós desenvolvemos uma outra alternativa, chamada de single-cut-or-join (SCJ). Nós mostramos que, no modelo SCJ, além da distância, vários problemas clássicos de rearranjo, como a mediana de rearranjo, genome halving e pequena parcimônia são fáceis, e apresentamos algoritmos polinomiais para eles. O segundo modelo que apresentamos é o formalismo algébrico por adjacências, uma extensão do formalismo algébrico proposto por Meidanis e Dias, que permite a modelagem de cromossomos lineares. Esta era a principal limitação do formalismo original, que só tratava de cromossomos circulares. Apresentamos algoritmos polinomiais para o cálculo da distância algébrica e também para encontrar cenários de rearranjo entre dois genomas. Também mostramos como calcular a distância algébrica através do grafo de adjacências, para facilitar a comparação com outras distâncias de rearranjo. Por fim, mostramos como modelar todas as operações clássicas de rearranjo de genomas utilizando o formalismo algébrico Abstract: Genome rearrangements are events where large blocks of DNA exchange places during evolution. With the growing availability of whole genome data, the analysis of these events can be a very important and promising tool for understanding evolutionary genomics. Several mathematical models of genome rearrangement have been proposed in the last 20 years. In this thesis, we propose two new rearrangement models. The first was introduced as an alternative definition of the breakpoint distance. The breakpoint distance is one of the most straightforward genome comparison measures, but when it comes to defining it precisely for multichromosomal genomes, there is more than one way to go about it. Pevzner and Tesler gave a definition in a 2003 paper, and Tannier et al. defined it differently in 2008. In this thesis we provide yet another alternative, calling it single-cut-or-join (SCJ). We show that several genome rearrangement problems, such as genome median, genome halving and small parsimony, become easy for SCJ, and provide polynomial time algorithms for them. The second model we introduce is the Adjacency Algebraic Theory, an extension of the Algebraic Formalism proposed by Meidanis and Dias that allows the modeling of linear chromosomes, the main limitation of the original formalism, which could deal with circular chromosomes only. We believe that the algebraic formalism is an interesting alternative for solving rearrangement problems, with a different perspective that could complement the more commonly used combinatorial graph-theoretic approach. We present polynomial time algorithms to compute the algebraic distance and find rearrangement scenarios between two genomes. We show how to compute the rearrangement distance from the adjacency graph, for an easier comparison with other rearrangement distances. Finally, we show how all classic rearrangement operations can be modeled using the algebraic theory Doutorado Ciência da Computação Doutor em Ciência da Computação
- Published
- 2021
- Full Text
- View/download PDF