78 results on '"Nicolas, Chassaing"'
Search Results
2. Evaluation of somatic and/or germline mosaicism in congenital malformation of the eye
- Author
-
Bertrand Chesneau, Véronique Ivashchenko, Christophe Habib, Véronique Gaston, Fréderic Escudié, Godelieve Morel, Yline Capri, Catherine Vincent-Delorme, Patrick Calvas, Nicolas Chassaing, and Julie Plaisancié
- Subjects
Genetics ,Correction ,Genetics (clinical) - Abstract
Microphthalmia, Anophthalmia and Coloboma (MAC) form a spectrum of congenital eye malformations responsible for severe visual impairment. Despite the exploration of hundreds of genes by High-Throughput Sequencing (HTS), most of the patients remain without genetic diagnosis. One explanation could be the not yet demonstrated involvement of somatic mosaicism (undetected by conventional analysis pipelines) in those patients. Furthermore, the proportion of parental germline mosaicism in presumed de novo variations is still unknown in ocular malformations. Thus, using dedicated bioinformatics pipeline designed to detect mosaic variants, we reanalysed the sequencing data obtained from a 119 ocular development genes panel performed on blood samples of 78 probands with sporadic MAC without genetic diagnosis. Using the same HTS strategy, we sequenced 80 asymptomatic parents of 41 probands carrying a disease-causing variant in an ocular development gene considered de novo after Sanger sequencing of both parents. Reanalysis of the previously sequencing data did not find any mosaic variant in probands without genetic diagnosis. However, HTS of parents revealed undetected SOX2 and PAX6 mosaic variants in two parents. Finally, this work, performed on two large cohorts of patients with MAC spectrum, provides for the first time an overview of the interest of looking for mosaicism in ocular development disorders. Somatic mosaicism does not appear to be frequent in MAC spectrum and might explain only few diagnoses. Thus, other approaches such as whole genome sequencing should be considered in those patients. Parental mosaicism is however not that rare (around 5%) and challenging for genetic counselling.
- Published
- 2022
- Full Text
- View/download PDF
3. Individuals with heterozygous variants in the Wnt-signalling pathway gene FZD5 delineate a phenotype characterized by isolated coloboma and variable expressivity
- Author
-
Richard Holt, David Goudie, Alejandra Damián Verde, Alice Gardham, Francis Ramond, Audrey Putoux, Ajoy Sarkar, Virginia Clowes, Jill Clayton-Smith, Siddharth Banka, Laura Cortazar Galarza, Gilles Thuret, Marta Ubeda Erviti, Ane Zurutuza Ibarguren, Raquel Sáez Villaverde, Alejandra Tamayo Durán, Carmen Ayuso, Dorine A Bax, Julie Plaisancie, Marta Corton, Nicolas Chassaing, Patrick Calvas, and Nicola K Ragge
- Subjects
Ophthalmology ,Pediatrics, Perinatology and Child Health ,Genetics (clinical) - Published
- 2022
- Full Text
- View/download PDF
4. Severe Antenatal Hypertrophic Cardiomyopathy Secondary to ACAD9-Related Mitochondrial Complex I Deficiency
- Author
-
Charlotte Dubucs, Jacqueline Aziza, Agnès Sartor, François Heitz, Annick Sevely, Damien Sternberg, Claude Jardel, Tiscar Cavallé-Garrido, Steffen Albrecht, Chantal Bernard, Isabelle De Bie, and Nicolas Chassaing
- Subjects
Genetics ,Genetics (clinical) - Abstract
Introduction: Antenatal presentation of hypertrophic cardiomyopathy (HCM) is rare. We describe familial recurrence of antenatal HCM associated with intrauterine growth restriction and the diagnostic process undertaken. Methods: Two pregnancies with antenatal HCM were followed up. Biological assessment including metabolic analyses, genetic analyses, and respiratory chain study was performed. We describe the clinical course of these two pregnancies, antenatal manifestations as well as specific histopathological findings, and review the literature. Results: The assessment revealed a deficiency in complex I of the respiratory chain and two likely pathogenic variations in the ACAD9 gene. Discussion and Conclusion: Antenatal HCM is rare and a diagnosis is not always made. In pregnancies presenting with cardiomyopathy and intrauterine growth restriction, ACAD9 deficiency should be considered as one of the potential underlying diagnoses, and ACAD9 molecular testing should be included among other prenatal investigations.
- Published
- 2022
- Full Text
- View/download PDF
5. Bi-allelic variants inWNT7Bdisrupt the development of multiple organs in humans
- Author
-
Samir Bouasker, Nisha Patel, Rebecca Greenlees, Diana Wellesley, Lucas Fares Taie, Naif A Almontashiri, Julia Baptista, Malak Ali Alghamdi, Sarah Boissel, Jelena Martinovic, Ivan Prokudin, Samantha Holden, Hardeep-Singh Mudhar, Lisa G Riley, Christina Nassif, Tania Attie-Bitach, Marguerite Miguet, Marion Delous, Sylvain Ernest, Julie Plaisancié, Patrick Calvas, Jean-Michel Rozet, Arif O Khan, Fadi F Hamdan, Robyn V Jamieson, Fowzan S Alkuraya, Jacques L Michaud, and Nicolas Chassaing
- Subjects
Genetics ,Genetics (clinical) - Abstract
BackgroundPulmonary hypoplasia, Diaphragmatic anomalies, Anophthalmia/microphthalmia and Cardiac defects delineate the PDAC syndrome. We aim to identify the cause of PDAC syndrome in patients who do not carry pathogenic variants inRARBandSTRA6, which have been previously associated with this disorder.MethodsWe sequenced the exome of patients with unexplained PDAC syndrome and performed functional validation of candidate variants.ResultsWe identified bi-allelic variants inWNT7Bin fetuses with PDAC syndrome from two unrelated families. In one family, the fetus was homozygous for the c.292C>T (p.(Arg98*)) variant whereas the fetuses from the other family were compound heterozygous for the variants c.225C>G (p.(Tyr75*)) and c.562G>A (p.(Gly188Ser)). Finally, a molecular autopsy by proxy in a consanguineous couple that lost two babies due to lung hypoplasia revealed that both parents carry the p.(Arg98*) variant. Using a WNT signalling canonical luciferase assay, we demonstrated that the identified variants are deleterious. In addition, we found thatwnt7bbmutant zebrafish display a defect of the swimbladder, an air-filled organ that is a structural homolog of the mammalian lung, suggesting that the function of WNT7B has been conserved during evolution for the development of these structures.ConclusionOur findings indicate that defective WNT7B function underlies a form of lung hypoplasia that is associated with the PDAC syndrome, and provide evidence for involvement of the WNT–β-catenin pathway in human lung, tracheal, ocular, cardiac, and renal development.
- Published
- 2022
- Full Text
- View/download PDF
6. O'Donnell-Luria-Rodan syndrome
- Author
-
Camille Kumps, Heather Paterson, Benoît Funalot, Marjon van Slegtenhorst, Ingrid M.B.H. van de Laar, Robin Clark, Elliott H. Sherr, Marion Gérard, Jasmine L.F. Fung, Emanuela Argilli, Megan E. Rech, Antonio Vitobello, Christian Netzer, Christian P. Schaaf, Coranne D. Aarts-Tesselaar, Angela Abicht, Lennart Lessmeier, Brian H.Y. Chung, Anne-Sophie Denommé-Pichon, Jason Carmichael, Frédéric Tran Mau-Them, Andrea Superti-Furga, Marion Aubert Mucca, Marcus Cy Chan, Nicolas Chassaing, Christine Coubes, Anne H. O’Donnell-Luria, Lynn Pais, Colleen Kennedy, Daphné Lehalle, Maries Joseph, Kathleen A. Leppig, Florian Erger, John Karl de Dios, Lance H. Rodan, Marjolaine Willems, Subhadra Ramanathan, Clara Velmans, Eleina M. England, and Clinical Genetics
- Subjects
0301 basic medicine ,Pediatrics ,Autism Spectrum Disorder ,behavioural ,Autism ,Medical and Health Sciences ,0302 clinical medicine ,Neurodevelopmental disorder ,Intellectual disability ,2.1 Biological and endogenous factors ,Aetiology ,Child ,Exome ,Genetics (clinical) ,Pediatric ,Genetics & Heredity ,Syndrome ,Biological Sciences ,Mental Health ,Autism spectrum disorder ,Cohort ,medicine.symptom ,medicine.medical_specialty ,Genetic counseling ,Intellectual and Developmental Disabilities (IDD) ,human genetics ,Article ,03 medical and health sciences ,Seizures ,Clinical Research ,Intellectual Disability ,Exome Sequencing ,medicine ,Genetics ,Humans ,business.industry ,Human Genome ,Macrocephaly ,Neurosciences ,medicine.disease ,Human genetics ,Megalencephaly ,Brain Disorders ,030104 developmental biology ,Neurodevelopmental Disorders ,Congenital Structural Anomalies ,mutation ,business ,030217 neurology & neurosurgery ,genetic counselling - Abstract
BackgroundO’Donnell-Luria-Rodan syndrome (ODLURO) is an autosomal-dominant neurodevelopmental disorder caused by pathogenic, mostly truncating variants in KMT2E. It was first described by O’Donnell-Luria et al in 2019 in a cohort of 38 patients. Clinical features encompass macrocephaly, mild intellectual disability (ID), autism spectrum disorder (ASD) susceptibility and seizure susceptibility.MethodsAffected individuals were ascertained at paediatric and genetic centres in various countries by diagnostic chromosome microarray or exome/genome sequencing. Patients were collected into a case cohort and were systematically phenotyped where possible.ResultsWe report 18 additional patients from 17 families with genetically confirmed ODLURO. We identified 15 different heterozygous likely pathogenic or pathogenic sequence variants (14 novel) and two partial microdeletions of KMT2E. We confirm and refine the phenotypic spectrum of the KMT2E-related neurodevelopmental disorder, especially concerning cognitive development, with rather mild ID and macrocephaly with subtle facial features in most patients. We observe a high prevalence of ASD in our cohort (41%), while seizures are present in only two patients. We extend the phenotypic spectrum by sleep disturbances.ConclusionOur study, bringing the total of known patients with ODLURO to more than 60 within 2 years of the first publication, suggests an unexpectedly high relative frequency of this syndrome worldwide. It seems likely that ODLURO, although just recently described, is among the more common single-gene aetiologies of neurodevelopmental delay and ASD. We present the second systematic case series of patients with ODLURO, further refining the mutational and phenotypic spectrum of this not-so-rare syndrome.
- Published
- 2022
7. First evidence of <scp> SOX2 </scp> mutations in Peters' anomaly: Lessons from molecular screening of 95 patients
- Author
-
Bertrand Chesneau, Marion Aubert‐Mucca, Félix Fremont, Jacmine Pechmeja, Vincent Soler, Bertrand Isidor, Mathilde Nizon, Hélène Dollfus, Josseline Kaplan, Lucas Fares‐Taie, Jean‐Michel Rozet, Tiffany Busa, Didier Lacombe, Sophie Naudion, Jeanne Amiel, Marlène Rio, Tania Attie‐Bitach, Cécile Lesage, Dominique Thouvenin, Sylvie Odent, Godelieve Morel, Catherine Vincent‐Delorme, Odile Boute, Clémence Vanlerberghe, Anne Dieux, Simon Boussion, Laurence Faivre, Lucile Pinson, Fanny Laffargue, Gwenaël Le Guyader, Guylène Le Meur, Fabienne Prieur, Victor Lambert, Beatrice Laudier, Edouard Cottereau, Carmen Ayuso, Marta Corton‐Pérez, Laurence Bouneau, Cédric Le Caignec, Véronique Gaston, Claire Jeanton‐Scaramouche, Delphine Dupin‐Deguine, Patrick Calvas, Nicolas Chassaing, Julie Plaisancié, Centre Hospitalier Universitaire de Toulouse (CHU Toulouse), unité de recherche de l'institut du thorax UMR1087 UMR6291 (ITX), Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Nantes Université - UFR de Médecine et des Techniques Médicales (Nantes Univ - UFR MEDECINE), Nantes Université - pôle Santé, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Santé, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ), Centre de Référence pour les Affections Rares en Génétique Ophtalmologique (CARGO) et Service de Génétique Médicale, Hôpitaux Universitaires de Strasbourg, Imagine - Institut des maladies génétiques (IHU) (Imagine - U1163), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris Cité (UPCité), Département de génétique médicale [Hôpital de la Timone - APHM], Aix Marseille Université (AMU)-Assistance Publique - Hôpitaux de Marseille (APHM)- Hôpital de la Timone [CHU - APHM] (TIMONE)-Institut National de la Santé et de la Recherche Médicale (INSERM), CHU Bordeaux [Bordeaux], CHU Necker - Enfants Malades [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP), Institut des Jeunes Aveugles [Toulouse] (IJA), Clinique rive gauche, Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique ), Centre de référence Maladies Rares CLAD-Ouest [Rennes], CHU Lille, Centre Hospitalier Universitaire de Dijon - Hôpital François Mitterrand (CHU Dijon), Département génétique méd, mal rares et médecine personnalisée [CHRU de Montpellier], Pôle Biologie-Pathologie [CHRU Montpellier], Centre Hospitalier Régional Universitaire [Montpellier] (CHRU Montpellier)-Centre Hospitalier Régional Universitaire [Montpellier] (CHRU Montpellier), CHU Estaing [Clermont-Ferrand], CHU Clermont-Ferrand, Centre hospitalier universitaire de Poitiers (CHU Poitiers), Centre hospitalier universitaire de Nantes (CHU Nantes), Centre Hospitalier Universitaire de Saint-Etienne [CHU Saint-Etienne] (CHU ST-E), Centre Hospitalier Régional d'Orléans (CHRO), CHU Trousseau [Tours], Centre Hospitalier Régional Universitaire de Tours (CHRU Tours), CIBER de Enfermedades Raras (CIBERER), Universidad Autónoma de Madrid (UAM), Toulouse Neuro Imaging Center (ToNIC), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Toulouse Mind & Brain Institut (TMBI), Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT), French National Research AgencyFrench National Research Agency (ANR) [ANR-10-COHO-0003], and ANR-10-COHO-0003,RADICO,Cohorte nationale maladies rares(2010)
- Subjects
Comparative Genomic Hybridization ,[SDV.GEN]Life Sciences [q-bio]/Genetics ,DNA Copy Number Variations ,SOXB1 Transcription Factors ,Peters' anomaly ,[SDV]Life Sciences [q-bio] ,CNV ,SOX2 ,eye diseases ,PAX6 ,Corneal Opacity ,microphthalmia ,Anterior Eye Segment ,Mutation ,B3GLCT ,Genetics ,Humans ,anterior segment dysgenesis ,FOXE3 ,Eye Abnormalities ,PITX3 ,Genetics (clinical) - Abstract
International audience; Peters' anomaly (PA) is a rare anterior segment dysgenesis characterized by central corneal opacity and irido-lenticulo-corneal adhesions. Several genes are involved in syndromic or isolated PA (B3GLCT, PAX6, PITX3, FOXE3, CYP1B1). Some copy number variations (CNVs) have also been occasionally reported. Despite this genetic heterogeneity, most of patients remain without genetic diagnosis. We retrieved a cohort of 95 individuals with PA and performed genotyping using a combination of comparative genomic hybridization, whole genome, exome and targeted sequencing of 119 genes associated with ocular development anomalies. Causative genetic defects involving 12 genes and CNVs were identified for 1/3 of patients. Unsurprisingly, B3GLCT and PAX6 were the most frequently implicated genes, respectively in syndromic and isolated PA. Unexpectedly, the third gene involved in our cohort was SOX2, the major gene of micro-anophthalmia. Four unrelated patients with PA (isolated or with microphthalmia) were carrying pathogenic variants in this gene that was never associated with PA before. Here we described the largest cohort of PA patients ever reported. The genetic bases of PA are still to be explored as genetic diagnosis was unavailable for 2/3 of patients. Nevertheless, we showed here for the first time the involvement of SOX2 in PA, offering new evidence for its role in corneal transparency and anterior segment development.
- Published
- 2022
- Full Text
- View/download PDF
8. ARHGAP35 is a novel factor disrupted in human developmental eye phenotypes
- Author
-
Linda M. Reis, Nicolas Chassaing, Tanya Bardakjian, Samuel Thompson, Adele Schneider, and Elena V. Semina
- Subjects
Genetics ,Genetics (clinical) - Abstract
ARHGAP35 has known roles in cell migration, invasion and division, neuronal morphogenesis, and gene/mRNA regulation; prior studies indicate a role in cancer in humans and in the developing eyes, neural tissue, and renal structures in mice. We identified damaging variants in ARHGAP35 in five individuals from four families affected with anophthalmia, microphthalmia, coloboma and/or anterior segment dysgenesis disorders, together with variable non-ocular phenotypes in some families including renal, neurological, or cardiac anomalies. Three variants affected the extreme C-terminus of the protein, with two resulting in a frameshift and C-terminal extension and the other a missense change in the Rho-GAP domain; the fourth (nonsense) variant affected the middle of the gene and is the only allele predicted to undergo nonsense-mediated decay. This study implicates ARHGAP35 in human developmental eye phenotypes. C-terminal clustering of the identified alleles indicates a possible common mechanism for ocular disease but requires further studies.
- Published
- 2022
9. Clinical and functional heterogeneity associated with the disruption of Retinoic Acid Receptor beta
- Author
-
Véronique Caron, Nicolas Chassaing, Nicola Ragge, Felix Boschann, Angelina My-Hoa Ngu, Elisabeth Meloche, Sarah Chorfi, Saquib A. Lakhani, Weizhen Ji, Laurie Steiner, Julien Marcadier, Philip R. Jansen, Laura A. van de Pol, Johanna M. van Hagen, Alvaro Serrano Russi, Gwenaël Le Guyader, Magnus Nordenskjöld, Ann Nordgren, Britt-Marie Anderlid, Julie Plaisancié, Corinna Stoltenburg, Denise Horn, Anne Drenckhahn, Fadi F. Hamdan, Mathilde Lefebvre, Tania Attie-Bitach, Peggy Forey, Vasily Smirnov, Françoise Ernould, Marie-Line Jacquemont, Sarah Grotto, Alberto Alcantud, Alicia Coret, Rosario Ferrer-Avargues, Siddharth Srivastava, Catherine Vincent-Delorme, Shelby Romoser, Nicole Safina, Dimah Saade, James R. Lupski, Daniel G. Calame, David Geneviève, Nicolas Chatron, Caroline Schluth-Bolard, Kenneth A. Myers, William B. Dobyns, Patrick Calvas, Caroline Salmon, Richard Holt, Frances Elmslie, Marc Allaire, Daniil M. Prigozhin, André Tremblay, Jacques L. Michaud, Pediatrics, Human genetics, and Amsterdam Reproduction & Development (AR&D)
- Subjects
Genetics (clinical) - Abstract
Purpose: Dominant variants in the retinoic acid receptor beta (RARB) gene underlie a syndromic form of microphthalmia, known as MCOPS12, which is associated with other birth anomalies and global developmental delay with spasticity and/or dystonia. Here, we report 25 affected individuals with 17 novel pathogenic or likely pathogenic variants in RARB. This study aims to characterize the functional impact of these variants and describe the clinical spectrum of MCOPS12. Methods: We used in vitro transcriptional assays and in silico structural analysis to assess the functional relevance of RARB variants in affecting the normal response to retinoids. Results: We found that all RARB variants tested in our assays exhibited either a gain-of-function or a loss-of-function activity. Loss-of-function variants disrupted RARB function through a dominant-negative effect, possibly by disrupting ligand binding and/or coactivators’ recruitment. By reviewing clinical data from 52 affected individuals, we found that disruption of RARB is associated with a more variable phenotype than initially suspected, with the absence in some individuals of cardinal features of MCOPS12, such as developmental eye anomaly or motor impairment. Conclusion: Our study indicates that pathogenic variants in RARB are functionally heterogeneous and associated with extensive clinical heterogeneity.
- Published
- 2023
- Full Text
- View/download PDF
10. Clinical and neuroimaging findings in 33 patients with <scp>MCAP</scp> syndrome: A survey to evaluate relevant endpoints for future clinical trials
- Author
-
Florence Petit, Fabienne Giuliano, Juliette Mazereeuw-Hautier, Marjolaine Willems, Christel Thauvin-Robinet, Patricia Blanchet, Laurence Faivre, Elodie Gautier, Anne-Claire Bursztejn, Renaud Touraine, Annick Toutain, Frederico Di Rocco, Maxime Luu, Patrick Edery, Arthur Sorlin, Jean-Luc Alessandri, Nicolas Chassaing, Alice Goldenberg, Christine Chiaverini, Fanny Morice-Picard, Aurore Garde, Stéphanie Arpin, Massimiliano Rossi, Marc Bardou, Claire Nicolas, Gilles Morin, Jenny Cornaton, Cyril Mignot, Christophe Philippe, V. Carmignac, Rodolphe Dard, Joelle Roume, Michèle Mathieu-Dramard, Philippe Khau Van Kien, Pierre Vabres, Didier Lacombe, Diane Doummar, Lucile Pinson, Christine Coubes, Laurent Guibaud, Olivia Boccara, Laboratoire Maladies Rares: Génétique et Métabolisme (Bordeaux) (U1211 INSERM/MRGM), and Université de Bordeaux (UB)-Groupe hospitalier Pellegrin-Institut National de la Santé et de la Recherche Médicale (INSERM)
- Subjects
Adult ,Male ,0301 basic medicine ,Pediatrics ,medicine.medical_specialty ,Cutis marmorata ,Adolescent ,Class I Phosphatidylinositol 3-Kinases ,Neuroimaging ,Context (language use) ,Skin Diseases, Vascular ,030105 genetics & heredity ,Cohort Studies ,Young Adult ,03 medical and health sciences ,Genetics ,Polymicrogyria ,medicine ,Humans ,PROS ,Abnormalities, Multiple ,Telangiectasis ,Megalencephaly ,Child ,MCAP syndrome ,Genetics (clinical) ,Chiari malformation ,Clinical Trials as Topic ,business.industry ,Macrocephaly ,PIK3CA ,medicine.disease ,Magnetic Resonance Imaging ,3. Good health ,Clinical trial ,030104 developmental biology ,Child, Preschool ,Postnatal macrocephaly ,Female ,medicine.symptom ,business ,[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology ,Forecasting ,Ventriculomegaly - Abstract
Megalencephaly-CApillary malformation-Polymicrogyria (MCAP) syndrome results from somatic mosaic gain-of-function variants in PIK3CA. Main features are macrocephaly, somatic overgrowth, cutaneous vascular malformations, connective tissue dysplasia, neurodevelopmental delay, and brain anomalies. The objectives of this study were to describe the clinical and radiological features of MCAP, to suggest relevant clinical endpoints applicable in future trials of targeted drug therapy. Based on a French collaboration, we collected clinical features of 33 patients (21 females, 12 males, median age of 9.9 years) with MCAP carrying mosaic PIK3CA pathogenic variants. MRI images were reviewed for 21 patients. The main clinical features reported were macrocephaly at birth (20/31), postnatal macrocephaly (31/32), body/facial asymmetry (21/33), cutaneous capillary malformations (naevus flammeus 28/33, cutis marmorata 17/33). Intellectual disability was present in 15 patients. Among the MRI images reviewed, the neuroimaging findings were megalencephaly (20/21), thickening of corpus callosum (16/21), Chiari malformation (12/21), ventriculomegaly/hydrocephaly (10/21), cerebral asymmetry (6/21) and polymicrogyria (2/21). This study confirms the main known clinical features that defines MCAP syndrome. Taking into account the phenotypic heterogeneity in MCAP patients, in the context of emerging clinical trials, we suggest that patients should be evaluated based on the main neurocognitive expression on each patient.
- Published
- 2021
- Full Text
- View/download PDF
11. Parental mosaicism in Marfan and Ehlers–Danlos syndromes and related disorders
- Author
-
Thomas Edouard, Guillaume Rolland, Marion Aubert-Mucca, Thierry Lavabre-Bertrand, Nicolas Chassaing, Aurélie Plancke, Yves Dulac, Philippe Khau Van Kien, Elise Brischoux-Boucher, Julie Plaisancié, Bertrand Chesneau, and Christine Coubes
- Subjects
musculoskeletal diseases ,Adult ,Male ,Marfan syndrome ,congenital, hereditary, and neonatal diseases and abnormalities ,Fibrillin-1 ,Context (language use) ,Aortic diseases ,Article ,High Resolution Melt ,Marfan Syndrome ,03 medical and health sciences ,symbols.namesake ,Genetics ,Humans ,Medicine ,In patient ,Genetic Testing ,Heritable connective tissue disorder ,Child ,Genetics (clinical) ,Aged ,030304 developmental biology ,Sanger sequencing ,0303 health sciences ,Genetic counselling ,Direct sequencing ,Disease genetics ,Mosaicism ,business.industry ,Medical genetics ,030305 genetics & heredity ,Middle Aged ,medicine.disease ,Pedigree ,Ehlers danlos ,symbols ,Ehlers-Danlos Syndrome ,Female ,business ,Collagen Type V - Abstract
Marfan syndrome (MFS) is a heritable connective tissue disorder (HCTD) caused by pathogenic variants in FBN1 that frequently occur de novo. Although individuals with somatogonadal mosaicisms have been reported with respect to MFS and other HCTD, the overall frequency of parental mosaicism in this pathology is unknown. In an attempt to estimate this frequency, we reviewed all the 333 patients with a disease-causing variant in FBN1. We then used direct sequencing, combined with High Resolution Melting Analysis, to detect mosaicism in their parents, complemented by NGS when a mosaicism was objectivized. We found that (1) the number of apparently de novo events is much higher than the classically admitted number (around 50% of patients and not 25% as expected for FBN1) and (2) around 5% of the FBN1 disease-causing variants were not actually de novo as anticipated, but inherited in a context of somatogonadal mosaicisms revealed in parents from three families. High Resolution Melting Analysis and NGS were more efficient at detecting and evaluating the level of mosaicism compared to direct Sanger sequencing. We also investigated individuals with a causal variant in another gene identified through our “aortic diseases genes” NGS panel and report, for the first time, on an individual with a somatogonadal mosaicism in COL5A1. Our study shows that parental mosaicism is not that rare in Marfan syndrome and should be investigated with appropriate methods given its implications in patient’s management.
- Published
- 2021
- Full Text
- View/download PDF
12. Confirmation of FZD5 implication in a cohort of 50 patients with ocular coloboma
- Author
-
Julie Pernin-Grandjean, Sébastien Marchasson, Marion Aubert-Mucca, Nicolas Chassaing, Sabine Sigaudy, Christophe Habib, Pierre Bitoun, Olivier Roche, Danièle Denis, Julie Plaisancié, Isabelle Meunier, Josseline Kaplan, V. Gaston, Alain Verloes, Patrick Calvas, and Damien Haye
- Subjects
Adult ,Adolescent ,Receptors, Retinoic Acid ,Ocular Coloboma ,Bioinformatics ,Microphthalmia ,Article ,TFAP2A ,Gene Frequency ,Genetics ,medicine ,Humans ,Inheritance Patterns ,Child ,Eye Proteins ,Gene ,Genetics (clinical) ,Aged ,Coloboma ,Genetic heterogeneity ,business.industry ,Intracellular Signaling Peptides and Proteins ,Middle Aged ,medicine.disease ,Frizzled Receptors ,eye diseases ,Transcription Factor AP-2 ,Child, Preschool ,Cohort ,sense organs ,business ,Retinol-Binding Proteins, Plasma - Abstract
Defects in optic fissure closure can lead to congenital ocular coloboma. This ocular malformation, often associated with microphthalmia, is described in various clinical forms with different inheritance patterns and genetic heterogeneity. In recent times, the identification of an increased number of genes involved in numerous cellular functions has led to a better understanding in optic fissure closure mechanisms. Nevertheless, most of these genes are also involved in wider eye growth defects such as micro-anophthalmia, questioning the mechanisms controlling both extension and severity of optic fissure closure defects. However, some genes, such as FZD5, have only been so far identified in isolated coloboma. Thus, to estimate the frequency of implication of different ocular genes, we screened a cohort of 50 patients affected by ocular coloboma by using targeted sequencing of 119 genes involved in ocular development. This analysis revealed seven heterozygous (likely) pathogenic variants in RARB, MAB21L2, RBP4, TFAP2A, and FZD5. Surprisingly, three out of the seven variants detected herein were novel disease-causing variants in FZD5 identified in three unrelated families with dominant inheritance. Although molecular diagnosis rate remains relatively low in patients with ocular coloboma (14% (7/50) in this work), these results, however, highlight the importance of genetic screening, especially of FZD5, in such patients. Indeed, in our series, FZD5 variants represent half of the genetic causes, constituting 6% (3/50) of the patients who benefited from a molecular diagnosis. Our findings support the involvement of FZD5 in ocular coloboma and provide clues for screening this gene during current diagnostic procedures.
- Published
- 2020
- Full Text
- View/download PDF
13. Novel PXDN biallelic variants in patients with microphthalmia and anterior segment dysgenesis
- Author
-
Ana Arteche, Olivier Roche, Marta Corton, Christian Gilissen, Felix Frémont, Patrick Calvas, Adele Schneider, Nicola K. Ragge, Pierre Bitoun, Carmen Ayuso, Dimitra Zafeiropoulou, Julie Plaisancié, Anne Slavotinek, Celia Zazo-Seco, and Nicolas Chassaing
- Subjects
0301 basic medicine ,Genetics ,Anophthalmia ,genetic structures ,Genetic heterogeneity ,Metabolic Disorders Radboud Institute for Molecular Life Sciences [Radboudumc 6] ,030105 genetics & heredity ,Biology ,medicine.disease ,Microphthalmia ,eye diseases ,03 medical and health sciences ,Dysgenesis ,030104 developmental biology ,Microspherophakia ,Aniridia ,medicine ,sense organs ,Allele ,Exome ,Genetics (clinical) - Abstract
Contains fulltext : 220455.pdf (Publisher’s version ) (Closed access) Microphthalmia, anophthalmia, and anterior segment dysgenesis are severe ocular developmental defects. There is a wide genetic heterogeneity leading to these ocular malformations. By using whole genome, exome and targeted sequencing in patients with ocular developmental anomalies, six biallelic pathogenic variants (including five novel variants) were identified in the PXDN gene in four families with microphthalmia and anterior segment dysgenesis. Only 11 different mutations (11 families) have been described in this gene to date. The phenotype of these patients is variable in severity, ranging from cataract and developmental glaucoma to complex microphthalmia. Interestingly, two unrelated patients of our series presented with an ocular phenotype including aniridia and microspherophakia. However, despite various phenotypic presentations and types of mutations, no genotype-phenotype correlation could be made. Thus, this work improves our knowledge of the recessive phenotype associated with biallelic variants in this gene and highlights the importance of screening PXDN in patients with anterior segment dysgenesis with or without microphthalmia.
- Published
- 2020
- Full Text
- View/download PDF
14. Correction to: Evaluation of somatic and/or germline mosaicism in congenital malformation of the eye
- Author
-
Bertrand Chesneau, Véronique Ivashchenko, Christophe Habib, Véronique Gaston, Fréderic Escudié, Godelieve Morel, Yline Capri, Catherine Vincent-Delorme, Patrick Calvas, Nicolas Chassaing, and Julie Plaisancié
- Subjects
Genetics ,Genetics (clinical) - Published
- 2022
- Full Text
- View/download PDF
15. EPHA2 biallelic disruption causes syndromic complex microphthalmia with iris hypoplasia
- Author
-
Cécile, Courdier, Anna, Gemahling, Damien, Guindolet, Amandine, Barjol, Claire, Scaramouche, Laurence, Bouneau, Patrick, Calvas, Gilles, Martin, Nicolas, Chassaing, and Julie, Plaisancié
- Subjects
Homeodomain Proteins ,PAX6 Transcription Factor ,Iris ,General Medicine ,Cataract ,Pedigree ,Repressor Proteins ,Mutation ,Genetics ,Humans ,Microphthalmos ,Paired Box Transcription Factors ,Eye Abnormalities ,Eye Proteins ,Aniridia ,Genetics (clinical) - Abstract
Disruption of any of the ocular development steps can result in ocular defects such as microphthalmia, coloboma and anterior segment dysgeneses including aniridia and cataract. All of these anomalies can be isolated or seen in association with each other. Except for aniridia (almost exclusively due to PAX6 mutations), most of these congenital ocular malformations are related to a wide genetic heterogeneity, as hundreds of genes are implied in ocular development. Here we describe a patient presenting with bilateral microphthalmia, congenital cataract, corneal dystrophy and iris hypoplasia, associated with extra-ocular features, who underwent an analysis of 119 ocular development related genes. Genetic testing revealed the presence of two truncating variants in the EPHA2 gene. While EPHA2 mutations are mainly known to be responsible for isolated dominant congenital cataract, we report here the first case of complex anterior segment dysgenesis caused by a biallelic EPHA2 mutation. This gene should be screened in case of aniridia with a negative PAX6 testing, as the ocular features of our patient clearly mimic those of PAX6 mutated patients. This observation enlarges the phenotype associated with EPHA2 variations and rise the insight of a possible PAX6-EPHA2 interaction that needs further investigations. Moreover, despite a great variability in ocular and extra-ocular phenotypes, mutations type and inheritance pattern, a possible genotype-phenotype correlation can also be drawn for this gene.
- Published
- 2022
- Full Text
- View/download PDF
16. School level of children carrying a HNF1B variant or a deletion
- Author
-
Annie Lahoche, Pierre Cochat, Cécile Saint-Martin, Isabelle Vrillon, Sylvie Cloarec, Philippe Eckart, Marie-Pierre Lavocat, Gwenaelle Roussey, Olivier Dunand, Brigitte Llanas, J. Tenenbaum, Vincent Guigonis, François Nobili, Nicolas Chassaing, Véronique Baudouin, Christine Bellanné-Chantelot, Laurence Heidet, Loïc De Parscau, Laurence Michel-Calemard, Christine Pietrement, Valérie Bonneville, Stéphane Decramer, Michel Tsimaratos, Fanny Lalieve, Claire Bahans, Nicolas Rodier, Françoise Broux, Vincent Morinière, and Lucie Bessenay
- Subjects
Male ,Pediatrics ,medicine.medical_specialty ,Adolescent ,Prenatal counseling ,Population ,Kidney ,Article ,Academic Performance ,Genetics ,medicine ,Humans ,In patient ,School level ,Child ,education ,Prospective cohort study ,Genetics (clinical) ,Hepatocyte Nuclear Factor 1-beta ,education.field_of_study ,business.industry ,Neuropsychology ,Syndrome ,HNF1B ,Neurodevelopmental Disorders ,Female ,business ,Gene Deletion ,Neuropsychiatric disease - Abstract
The prevalence of neurological involvement in patients with a deletion of or a variant in the HNF1B gene remains discussed. The aim of this study was to investigate the neuropsychological outcomes in a large cohort of children carrying either a HNF1B whole-gene deletion or a disease-associated variant, revealed by the presence of kidney anomalies. The neuropsychological development—based on school level—of 223 children included in this prospective cohort was studied. Data from 180 children were available for analysis. Patients mean age was 9.6 years, with 39.9% of girls. Among these patients, 119 carried a HNF1B deletion and 61 a disease-associated variant. In the school-aged population, 12.7 and 3.6% of patients carrying a HNF1B deletion and a disease-associated variant had special educational needs, respectively. Therefore, the presence of a HNF1B deletion increases the risk to present with a neuropsychiatric involvement when compared with the general population. On the other hand, almost 90% of patients carrying a HNF1B disease-associated variant or deletion have a normal schooling in a general educational environment. Even if these findings do not predict the risk of neuropsychiatric disease at adulthood, most patients diagnosed secondary to kidney anomalies do not show a neurological outcome severe enough to impede standard schooling at elementary school. These results should be taken into account in prenatal counseling.
- Published
- 2019
- Full Text
- View/download PDF
17. Identification of PITX3 mutations in individuals with various ocular developmental defects
- Author
-
Caroline Michot, Julie Plaisancié, Marta Corton, Edouard Cottereau, Julian Delanne, Nicolas Chassaing, Nicola K. Ragge, Jacmine Pechmeja, Celia Zazo Seco, P Calvas, Tatiana Lupasco, Carmen Ayuso, Unité différenciation épidermique et auto-immunité rhumatoïde (UDEAR), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Santé et de la Recherche Médicale (INSERM), Service de génétique médicale [Toulouse], CHU Toulouse [Toulouse]-Hôpital Purpan [Toulouse], CHU Toulouse [Toulouse], Service de Génétique Médicale [CHU Necker], CHU Necker - Enfants Malades [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP), Imagine - Institut des maladies génétiques (IHU) (Imagine - U1163), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Paris (UP), Service d'Ophtalmologie [Hopital Purpan - Toulouse], Centre de génétique - Centre de référence des maladies rares, anomalies du développement et syndromes malformatifs (CHU de Dijon), Centre Hospitalier Universitaire de Dijon - Hôpital François Mitterrand (CHU Dijon), Service de génétique [Tours], Hôpital Bretonneau-Centre Hospitalier Régional Universitaire de Tours (CHRU Tours), CIBER de Enfermedades Raras (CIBERER), Oxford Brookes University, Birmingham Women’s and Children’s Hospitals NHS Foundation Trust, Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-CHU Necker - Enfants Malades [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP), Centre Hospitalier Régional Universitaire de Tours (CHRU Tours)-Hôpital Bretonneau, CARBILLET, Véronique, Service Génétique Médicale [CHU Toulouse], Institut Fédératif de Biologie (IFB), Centre Hospitalier Universitaire de Toulouse (CHU Toulouse)-Centre Hospitalier Universitaire de Toulouse (CHU Toulouse)-Pôle Biologie [CHU Toulouse], Centre Hospitalier Universitaire de Toulouse (CHU Toulouse), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris Cité (UPCité), Service d'Ophtalmologie [CHU Toulouse], Pôle Céphalique [CHU Toulouse], and Centre Hospitalier Universitaire de Toulouse (CHU Toulouse)-Centre Hospitalier Universitaire de Toulouse (CHU Toulouse)
- Subjects
0301 basic medicine ,Male ,genetic structures ,MESH: Congenital Abnormalities / pathology ,medicine.disease_cause ,Microphthalmia ,[SDV.MHEP.MI]Life Sciences [q-bio]/Human health and pathology/Infectious diseases ,MESH: Child ,Peters anomaly ,Microphthalmos ,PITX3 ,Eye Abnormalities ,Child ,Genetics (clinical) ,MESH: Heterozygote ,Genetics ,Sanger sequencing ,MESH: Aged ,MESH: Microphthalmos / pathology ,Mutation ,MESH: Infant, Newborn ,sclereocornea ,MESH: Congenital Abnormalities / genetics ,MESH: Infant ,3. Good health ,Pedigree ,Child, Preschool ,[SDV.MHEP.MI] Life Sciences [q-bio]/Human health and pathology/Infectious diseases ,Congenital cataracts ,symbols ,Female ,Heterozygote ,MESH: Mutation ,Adolescent ,MESH: Pedigree ,Biology ,MESH: Transcription Factors / genetics ,Cataract ,Congenital Abnormalities ,03 medical and health sciences ,symbols.namesake ,Cataracts ,Anterior segment mesenchymal disorder ,medicine ,Humans ,MESH: Homeodomain Proteins / genetics ,Aged ,MESH: Adolescent ,Homeodomain Proteins ,Anophthalmia ,MESH: Humans ,Genetic heterogeneity ,MESH: Child, Preschool ,MESH: Microphthalmos / genetics ,Infant, Newborn ,MESH: Eye Abnormalities / pathology ,Infant ,MESH: Cataract / pathology ,medicine.disease ,MESH: Male ,eye diseases ,Ophthalmology ,030104 developmental biology ,MESH: Cataract / genetics ,MESH: Eye Abnormalities / genetics ,Pediatrics, Perinatology and Child Health ,Eye development ,sense organs ,MESH: Female ,Transcription Factors - Abstract
Background: Congenital cataract displays large phenotypic (syndromic and isolated cataracts) and genetic heterogeneity. Mutations in several transcription factors involved in eye development, like PITX3, have been associated with congenital cataracts and anterior segment mesenchymal disorders. Materials and methods: Targeted sequencing of 187 genes involved in ocular development was performed in 96 patients with mainly anophthalmia and microphthalmia. Additionally, Sanger sequencing analysis of PITX3 was performed on a second cohort of 32 index cases with congenital cataract and Peters anomaly and/or sclereocornea. Results: We described five families with four different PITX3 mutations, two of which were novel. In Family 1, the heterozygous recurrent c.640_656dup (p.Gly220Profs*95) mutation cosegregated with eye anomalies ranging from congenital cataract to Peters anomaly. In Family 2, the novel c.669del [p.(Leu225Trpfs*84)] mutation cosegregated with dominantly inherited eye anomalies ranging from posterior embryotoxon to congenital cataract in heterozygous carriers and congenital sclereocornea and cataract in a patient homozygous for this mutation. In Family 3, we identified the recurrent heterozygous c.640_656dup (p.Gly220Profs*95) mutation segregating with congenital cataract. In Family 4, the de novo c.582del [p.(Ile194Metfs*115)] mutation was identified in a patient with congenital cataract, microphthalmia, developmental delay and autism. In Family 5, the c.38G>A (p.Ser13Asn) mutation segregated dominantly in a family with Peters anomaly, which is a novel phenotype associated with the c.38G>A variant compared with the previously reported isolated congenital cataract. Conclusions: Our study unveils different phenotypes associated with known and novel mutations in PITX3, which will improve the genetic counselling of patients and their families.
- Published
- 2021
- Full Text
- View/download PDF
18. Next-generation sequencing in a series of 80 fetuses with complex cardiac malformations and/or heterotaxy
- Author
-
Julien Thevenon, Sophie Blesson, Sylvie Manouvrier Hanu, Chloé Quélin, Florence Fellmann, Nicolas Chassaing, Fabienne Giuliano, Laetitia Lambert, Caroline Rooryck-Thambo, Pierre-Simon Jouk, Sylvie Di Filippo, Alexandre Vasiljevic, Christine Francannet, Daphné Lehalle, Audrey Putoux, Anna‐Gaëlle Giguet‐Valard, Sophie Naudion, Salima El Chehadeh, Estelle Colin, Viorica Ciorna‐Monferrato, Bruno Reversade, Lionel Van Maldergem, Fanny Morice-Picard, Renaud Touraine, Sébastien Moutton, Jocelyne Attia, Laurent Pasquier, A. Vigouroux-Castera, Catherine Yardin, Tania Attié-Bitach, Carine Abel, Hui Liu, Sylvie Odent, Christelle Cabrol, Florence Petit, Philippe Khau Van Kien, Thomas Simonet, Catherine Vincent-Delorme, Jean Chiesa, Juliette Piard, Anne Bazin, Mélanie Fradin, Bertrand Isidor, Loubna El Zein, Patrice Bouvagnet, Marie-Pierre Brechard, Emmanuelle Szenker-Ravi, Sophie Scheidecker, Claire Beneteau, and ACS - Heart failure & arrhythmias
- Subjects
Heart Defects, Congenital ,Male ,midline anomaly ,Heterozygote ,medicine.medical_specialty ,Genetic counseling ,Consanguinity ,Heterotaxy Syndrome ,Biology ,DNA sequencing ,03 medical and health sciences ,consanguinity ,Genetics ,medicine ,Humans ,Family ,Family history ,Genetics (clinical) ,030304 developmental biology ,0303 health sciences ,Fetus ,Obstetrics ,Homozygote ,030305 genetics & heredity ,High-Throughput Nucleotide Sequencing ,heterotaxy ,congenital heart defects ,Cardiac malformations ,Pedigree ,fetus ,Parental consanguinity ,Cytogenetic Analysis ,Mutation ,Female ,next-generation sequencing ,Heterotaxy - Abstract
Herein, we report the screening of a large panel of genes in a series of 80 fetuses with congenital heart defects (CHDs) and/or heterotaxy and no cytogenetic anomalies. There were 49 males (61%/39%), with a family history in 28 cases (35%) and no parental consanguinity in 77 cases (96%). All fetuses had complex CHD except one who had heterotaxy and midline anomalies while 52 cases (65%) had heterotaxy in addition to CHD. Altogether, 29 cases (36%) had extracardiac and extra-heterotaxy anomalies. A pathogenic variant was found in 10/80 (12.5%) cases with a higher percentage in the heterotaxy group (8/52 cases, 15%) compared with the non-heterotaxy group (2/28 cases, 7%), and in 3 cases with extracardiac and extra-heterotaxy anomalies (3/29, 10%). The inheritance was recessive in six genes (DNAI1, GDF1, MMP21, MYH6, NEK8, and ZIC3) and dominant in two genes (SHH and TAB2). A homozygous pathogenic variant was found in three cases including only one case with known consanguinity. In conclusion, after removing fetuses with cytogenetic anomalies, next-generation sequencing discovered a causal variant in 12.5% of fetal cases with CHD and/or heterotaxy. Genetic counseling for future pregnancies was greatly improved. Surprisingly, unexpected consanguinity accounts for 20% of cases with identified pathogenic variants.
- Published
- 2020
19. Regulation of human cerebral cortical development by EXOC7 and EXOC8, components of the exocyst complex, and roles in neural progenitor cell proliferation and survival
- Author
-
Richard S. Smith, Kiely N. James, Ganeshwaran H. Mochida, Matthew P. Harris, R. Sean Hill, Xiaochang Zhang, Christopher A. Walsh, Lihadh Al-Gazali, Lydie Burglen, Nicole E. Hatem, Tipu Sultan, Michael E. Coulter, Ellen M DeGennaro, Anna Rajab, Muna Al-Saffar, A. Stacy Kamumbu, Katrin Henke, Jacqueline Aziza, A. James Barkovich, Jennifer N. Partlow, Damir Musaev, Nicolas Chassaing, Joseph G. Gleeson, and Maha S. Zaki
- Subjects
Microcephaly ,EXOC7 ,Intellectual and Developmental Disabilities (IDD) ,1.1 Normal biological development and functioning ,Clinical Sciences ,Exocyst ,Biology ,EXOC8 ,Neurodegenerative ,Article ,Mice ,Rare Diseases ,Clinical Research ,Underpinning research ,Ciliogenesis ,medicine ,Genetics ,Animals ,Humans ,2.1 Biological and endogenous factors ,microcephaly ,Aetiology ,Intellectual and Developmental Disabilities ,Zebrafish ,Genetics (clinical) ,Cell Proliferation ,Pediatric ,Genetics & Heredity ,Brain Diseases ,Homozygote ,Neurosciences ,Disease gene identification ,medicine.disease ,biology.organism_classification ,Cell biology ,Brain Disorders ,developmental delay ,medicine.anatomical_structure ,exocyst ,Mental Health ,Cerebral cortex ,Neurological ,Congenital Structural Anomalies ,Cytokinesis - Abstract
Purpose The exocyst complex is a conserved protein complex that mediates fusion of intracellular vesicles to the plasma membrane and is implicated in processes including cell polarity, cell migration, ciliogenesis, cytokinesis, autophagy, and fusion of secretory vesicles. The essential role of these genes in human genetic disorders, however, is unknown. Methods We performed homozygosity mapping and exome sequencing of consanguineous families with recessively inherited brain development disorders. We modeled an EXOC7 splice variant in vitro and examined EXOC7 messenger RNA (mRNA) expression in developing mouse and human cortex. We modeled exoc7 loss-of-function in a zebrafish knockout. Results We report variants in exocyst complex members, EXOC7 and EXOC8, in a novel disorder of cerebral cortex development. In EXOC7, we identified four independent partial loss-of-function (LOF) variants in a recessively inherited disorder characterized by brain atrophy, seizures, and developmental delay, and in severe cases, microcephaly and infantile death. In EXOC8, we found a homozygous truncating variant in a family with a similar clinical disorder. We modeled exoc7 deficiency in zebrafish and found the absence of exoc7 causes microcephaly. Conclusion Our results highlight the essential role of the exocyst pathway in normal cortical development and how its perturbation causes complex brain disorders.
- Published
- 2020
20. 4q25 microdeletion encompassing PITX2 : A patient presenting with tetralogy of Fallot and dental anomalies without ocular features
- Author
-
P Calvas, S. El Hout, Nicolas Chassaing, C. Zazo Seco, Adeline Vigouroux, Laurence Bouneau, P. Vande Perre, O. Patat, D. Bourgeois, Unité différenciation épidermique et auto-immunité rhumatoïde (UDEAR), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Santé et de la Recherche Médicale (INSERM), and CHU Toulouse [Toulouse]
- Subjects
Male ,0301 basic medicine ,Pediatrics ,MESH: Epidermal Growth Factor / genetics ,Glaucoma ,Haploinsufficiency ,030105 genetics & heredity ,[SDV.MHEP.MI]Life Sciences [q-bio]/Human health and pathology/Infectious diseases ,MESH: Child ,Genotype ,Eye Abnormalities ,PITX2 ,Child ,Genetics (clinical) ,Tetralogy of Fallot ,MESH: Tetralogy of Fallot / pathology ,Genetics ,4q25 ,Eye Diseases, Hereditary ,MESH: Tooth Abnormalities / pathology ,MESH: Fatty Acid Elongases ,General Medicine ,MESH: Tooth Abnormalities / genetics ,Tetralogy of fallot ,Phenotype ,Penetrance ,Pedigree ,3. Good health ,MESH: Acetyltransferases / genetics ,Female ,MESH: Chromosomes, Human, Pair 4 / genetics ,MESH: Haploinsufficiency ,Chromosome Deletion ,Chromosomes, Human, Pair 4 ,Adult ,congenital, hereditary, and neonatal diseases and abnormalities ,medicine.medical_specialty ,Fatty Acid Elongases ,MESH: Pedigree ,MESH: Chromosome Deletion ,MESH: Eye Diseases, Hereditary ,Biology ,Glutamyl Aminopeptidase ,MESH: Phenotype ,MESH: Transcription Factors / genetics ,03 medical and health sciences ,stomatognathic system ,Acetyltransferases ,Anterior Eye Segment ,medicine ,Humans ,MESH: Anterior Eye Segment / abnormalities ,MESH: Homeodomain Proteins / genetics ,Homeodomain Proteins ,MESH: Humans ,Epidermal Growth Factor ,Axenfeld-rieger syndrome ,MESH: Glutamyl Aminopeptidase / genetics ,Tooth Abnormalities ,Point mutation ,MESH: Eye Abnormalities / pathology ,MESH: Adult ,medicine.disease ,MESH: Male ,eye diseases ,stomatognathic diseases ,030104 developmental biology ,MESH: Tetralogy of Fallot / genetics ,MESH: Eye Abnormalities / genetics ,sense organs ,MESH: Female ,Transcription Factors ,MESH: Anterior Eye Segment / pathology - Abstract
International audience; Axenfeld-Rieger syndrome (ARS) is a heterogeneous clinical entity transmitted in an autosomal dominant manner. The main feature, Axenfeld-Rieger Anomaly (ARA), is a malformation of the anterior segment of the eye that can lead to glaucoma and impair vision. Extra-ocular defects have also been reported. Point mutations of FOXC1 and PITX2 are responsible for about 40% of the ARS cases. We describe the phenotype of a patient carrying a deletion encompassing the 4q25 locus containing PITX2 gene. This child presented with a congenital heart defect (Tetralogy of Fallot, TOF) and no signs of ARA. He is the first patient described with TOF and a complete deletion of PITX2 (arr[GRCh37]4q25(110843057-112077858)x1, involving PITX2, EGF, ELOVL6 and ENPEP) inherited from his ARS affected mother. In addition, to our knowledge, he is the first patient reported with no ocular phenotype associated with haploinsufficiency of PITX2. We compare the phenotype and genotype of this patient to those of five other patients carrying 4q25 deletions. Two of these patients were enrolled in the university hospital in Toulouse, while the other three were already documented in DECIPHER. This comparative study suggests both an incomplete penetrance of the ocular malformation pattern in patients carrying PITX2 deletions and a putative association between TOF and PITX2 haploinsufficiency.
- Published
- 2018
- Full Text
- View/download PDF
21. De Novo Missense Variants in FBXW11 Cause Diverse Developmental Phenotypes Including Brain, Eye, and Digit Anomalies
- Author
-
Alaa Afif Mohammed, Yong-hui Jiang, Thalia Antoniadi, Cynthia J. Curry, Celia Zazo Seco, Dorine Bax, Slavé Petrovski, Samuel J.H. Clokie, Vandana Shashi, Stephen W. Wilson, Dianne Gerrelli, Nicola K. Ragge, Marco Tartaglia, Nicolas Chassaing, Andrea Ciolfi, Marleen Simon, Bruce D. Gelb, Helle Andersen, Zöe Powis, Patrick Calvas, Jennifer A. Sullivan, Fabiola Ceroni, Constance Smith-Hicks, Emanuele Bellacchio, Kristina Pilekær Sørensen, Rodrigo M. Young, Christina Fagerberg, Alessandro De Luca, Ellen van Binsbergen, Luigi Memo, William B. Dobyns, Anna Chassevent, Berta Crespo, Richard J. Holt, Holt R.J., Young R.M., Crespo B., Ceroni F., Curry C.J., Bellacchio E., Bax D.A., Ciolfi A., Simon M., Fagerberg C.R., van Binsbergen E., De Luca A., Memo L., Dobyns W.B., Mohammed A.A., Clokie S.J.H., Zazo Seco C., Jiang Y.-H., Sorensen K.P., Andersen H., Sullivan J., Powis Z., Chassevent A., Smith-Hicks C., Petrovski S., Antoniadi T., Shashi V., Gelb B.D., Wilson S.W., Gerrelli D., Tartaglia M., Chassaing N., Calvas P., and Ragge N.K.
- Subjects
Adult ,Male ,Adolescent ,hedgehog ,Ubiquitin-Protein Ligases ,brain ,Mutation, Missense ,Biology ,Fingers ,03 medical and health sciences ,Wnt ,FBXW11 ,Report ,Genetics ,medicine ,Humans ,Noonan syndrome ,Eye Abnormalities ,Child ,Exome ,Zebrafish ,development ,Genetics (clinical) ,030304 developmental biology ,0303 health sciences ,neurodevelopment ,digit ,030305 genetics & heredity ,Wnt signaling pathway ,WD40 ,medicine.disease ,biology.organism_classification ,beta-Transducin Repeat-Containing Proteins ,Phenotype ,eye ,human development ,Ubiquitin ligase complex ,Child, Preschool ,Eye development ,Female - Abstract
The identification of genetic variants implicated in human developmental disorders has been revolutionized by second-generation sequencing combined with international pooling of cases. Here, we describe seven individuals who have diverse yet overlapping developmental anomalies, and who all have de novo missense FBXW11 variants identified by whole exome or whole genome sequencing and not reported in the gnomAD database. Their phenotypes include striking neurodevelopmental, digital, jaw, and eye anomalies, and in one individual, features resembling Noonan syndrome, a condition caused by dysregulated RAS signaling. FBXW11 encodes an F-box protein, part of the Skp1-cullin-F-box (SCF) ubiquitin ligase complex, involved in ubiquitination and proteasomal degradation and thus fundamental to many protein regulatory processes. FBXW11 targets include β-catenin and GLI transcription factors, key mediators of Wnt and Hh signaling, respectively, critical to digital, neurological, and eye development. Structural analyses indicate affected residues cluster at the surface of the loops of the substrate-binding domain of FBXW11, and the variants are predicted to destabilize the protein and/or its interactions. In situ hybridization studies on human and zebrafish embryonic tissues demonstrate FBXW11 is expressed in the developing eye, brain, mandibular processes, and limb buds or pectoral fins. Knockdown of the zebrafish FBXW11 orthologs fbxw11a and fbxw11b resulted in embryos with smaller, misshapen, and underdeveloped eyes and abnormal jaw and pectoral fin development. Our findings support the role of FBXW11 in multiple developmental processes, including those involving the brain, eye, digits, and jaw.
- Published
- 2019
- Full Text
- View/download PDF
22. New GJA8 variants and phenotypes highlight its critical role in a broad spectrum of eye anomalies
- Author
-
Patricia Ramos, María José Sánchez-Soler, Alison Stewart, Nicolas Chassaing, Jonathan Bruty, Patrick Calvas, Domingo Aguilera-Garcia, Helen Stewart, Dominic J. McMullan, Dorine Bax, Yvonne Wallis, Alan Fryer, Anand Saggar, Carmen Ayuso, Cristina Villaverde, Fabiola Ceroni, Marta Corton, Luciana Rodrigues Jacy da Silva, Lisa Cooper-Charles, Michael J. Griffiths, Victoria McKay, Jonathan Hoffman, Maria Tarilonte, David J. Bunyan, María Juliana Ballesta-Martínez, Nicola K. Ragge, Richard J. Holt, Katherine Lachlan, Fiona Blanco-Kelly, Joelle Roume, Pascal Dureau, Oxford Brookes University, Universidad Autónoma de Madrid (UAM), CIBER de Enfermedades Raras (CIBERER), Unité différenciation épidermique et auto-immunité rhumatoïde (UDEAR), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire de Toulouse (CHU Toulouse), Oxford University Hospitals NHS Trust, University of Oxford, University College of London [London] (UCL), University Hospital Murcia, Partenaires INRAE, Birmingham Women's and Children's NHS Foundation Trust, Salisbury District Hospital, Sheffield Children's NHS Foundation Trust, University Hospital Southampton NHS Foundation Trust, University of Southampton, Liverpool Women's NHS Foundation Trust, CHI Poissy-Saint-Germain, Fondation Ophtalmologique Adolphe de Rothschild [Paris], St George's, University of London, The Wellcome Trust Sanger Institute [Cambridge], CP12/03256/Spanish Institute of Health Carlos III SAF2013-46943-R/Spanish Ministry of Economy and CompetitivenessHICF-1009-003/Health Innovation Challenge Fund, Pistre, Karine, Ceroni F., Aguilera-Garcia D., Chassaing N., Bax D.A., Blanco-Kelly F., Ramos P., Tarilonte M., Villaverde C., da Silva L.R.J., Ballesta-Martinez M.J., Sanchez-Soler M.J., Holt R.J., Cooper-Charles L., Bruty J., Wallis Y., McMullan D., Hoffman J., Bunyan D., Stewart A., Stewart H., Lachlan K., Fryer A., McKay V., Roume J., Dureau P., Saggar A., Griffiths M., Calvas P., Ayuso C., Corton M., and Ragge N.K.
- Subjects
Male ,MESH: Mutation, Missense / genetics ,Human eye development ,genetic structures ,MESH: Lens, Crystalline / pathology ,medicine.disease_cause ,Microphthalmia ,Connexins ,Cohort Studies ,Missense mutation ,Eye Abnormalities ,MESH: Cohort Studies ,Genetics (clinical) ,MESH: Heterozygote ,Genetics ,0303 health sciences ,Coloboma ,Mutation ,030305 genetics & heredity ,Gap Junctions ,MESH: Gap Junctions / genetics ,Pedigree ,GJA8 ,Phenotype ,MESH: Connexins / genetics ,[SDV.IMM]Life Sciences [q-bio]/Immunology ,Female ,Gap Junction ,Heterozygote ,[SDV.IMM] Life Sciences [q-bio]/Immunology ,MESH: Pedigree ,MESH: Eye Proteins / genetics ,Mutation, Missense ,Biology ,Connexin ,[SDV.GEN.GH] Life Sciences [q-bio]/Genetics/Human genetics ,MESH: Phenotype ,Cataract ,03 medical and health sciences ,Cataracts ,MESH: Genetic Association Studies / methods ,Lens, Crystalline ,medicine ,Humans ,Sclerocornea ,Eye Proteins ,Genetic Association Studies ,030304 developmental biology ,Anophthalmia ,MESH: Humans ,aphakia ,Len ,medicine.disease ,eye diseases ,MESH: Male ,MESH: Cataract / genetics ,microphthalmia ,[SDV.GEN.GH]Life Sciences [q-bio]/Genetics/Human genetics ,MESH: Eye Abnormalities / genetics ,Eye development ,sense organs ,MESH: Female - Abstract
International audience; GJA8 encodes connexin 50 (Cx50), a transmembrane protein involved in the formation of lens gap junctions. GJA8 mutations have been linked to early onset cataracts in humans and animal models. In mice, missense mutations and homozygous Gja8 deletions lead to smaller lenses and microphthalmia in addition to cataract, suggesting that Gja8 may play a role in both lens development and ocular growth. Following screening of GJA8 in a cohort of 426 individuals with severe congenital eye anomalies, primarily anophthalmia, microphthalmia and coloboma, we identified four known [p.(Thr39Arg), p.(Trp45Leu), p.(Asp51Asn), and p.(Gly94Arg)] and two novel [p.(Phe70Leu) and p.(Val97Gly)] likely pathogenic variants in seven families. Five of these co-segregated with cataracts and microphthalmia, whereas the variant p.(Gly94Arg) was identified in an individual with congenital aphakia, sclerocornea, microphthalmia and coloboma. Four missense variants of unknown or unlikely clinical significance were also identified. Furthermore, the screening of GJA8 structural variants in a subgroup of 188 individuals identified heterozygous 1q21 microdeletions in five families with coloboma and other ocular and/or extraocular findings. However, the exact genotype-phenotype correlation of these structural variants remains to be established. Our data expand the spectrum of GJA8 variants and associated phenotypes, confirming the importance of this gene in early eye development.
- Published
- 2019
- Full Text
- View/download PDF
23. Editorial to the special issue on 'Molecular Genetics of Developmental Eye Disorders'
- Author
-
Nicolas Chassaing, Nicola K. Ragge, and Patrick Calvas
- Subjects
medicine.medical_specialty ,Eye Diseases ,Molecular genetics ,Developmental Disabilities ,Genetics ,medicine ,Eye disorder ,Humans ,Computational biology ,Biology ,Molecular medicine ,Genetics (clinical) ,Human genetics - Published
- 2019
24. Complex Compound Inheritance of Lethal Lung Developmental Disorders Due to Disruption of the TBX-FGF Pathway
- Author
-
Martin A. Weber, Louise Devisme, Przemyslaw Szafranski, Fernando Scaglia, Megan K. Dishop, Eric Bieth, Claire Beneteau, Bruce Bennetts, Chantal Missirian, David Mowat, Sébastien Küry, Mark H. Lipson, Jennifer N. Dines, Justyna A. Karolak, James R. Lupski, Iben Bache, Amanda S. Freed, Véronique Secq, Bertrand Isidor, Gwenaelle André, Linda Pons, Anne Chun Hui Tsai, Qian Liu, Maria Orsaria, Claudia Gonzaga-Jauregui, Francesco Vetrini, Wendy K. Chung, Nicolas Joram, Jelena Martinovic, Marie Vincent, Cornelius F. Boerkoel, Arie van Haeringen, Tina M. Bartell, Gail H. Deutsch, Olivier Pichon, John A. Phillips, Marie Denis-Musquer, Zeynep Tümer, Tomasz Gambin, Nicolas Chassaing, Thomas Besnard, Edwina J. Popek, Arnaud Molin, Andrew J. Gifford, Zeynep Coban Akdemir, Benjamin Cogné, Kathleen A. Leppig, Galen M. Schauer, Catherine Mercer, Catherine Ward-Melver, Chester W. Brown, Jean Michel Liet, Dominique Carles, Madeleine Joubert, Lara Chalabreysse, Cédric Le Caignec, Damien Sanlaville, Tiphaine Bihouée, Heather C Mefford, Jean P. Pfotenhauer, Pawel Stankiewicz, Massimiliano Don, Anna F. Lee, Jérémie Mortreux, Katrina M. Dipple, Florence Petit, Katie Golden-Grant, Stéphane Bézieau, Shalini N. Jhangiani, Dorothy K. Grange, Laurent Pasquier, Daryl A. Scott, Centre hospitalier universitaire de Nantes (CHU Nantes), unité de recherche de l'institut du thorax UMR1087 UMR6291 (ITX), Université de Nantes - UFR de Médecine et des Techniques Médicales (UFR MEDECINE), Université de Nantes (UN)-Université de Nantes (UN)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Biomolécules et biotechnologies végétales (BBV EA 2106), Université de Tours, Division of Genetic Medicine [Seattle], University of Washington [Seattle], Laboratoire de dynamique des systèmes neuroendocriniens, Institut National de la Santé et de la Recherche Médicale (INSERM), Copenhagen University Hospitals, Clinical genetic clinic, Copenhagen University Hospital, Service de Pathologie, Centre hospitalier universitaire de Nantes (CHU Nantes)-Hôpital Femme-Enfant-Adolescent, Service de foetopathologie, Assistance publique - Hôpitaux de Paris (AP-HP) (APHP)-Université Paris Descartes - Paris 5 (UPD5)-CHU Necker - Enfants Malades [AP-HP], Service de génétique médicale - Unité de génétique clinique [Nantes], Université de Nantes (UN)-Centre hospitalier universitaire de Nantes (CHU Nantes), Service de Génétique [CHU Caen], Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-CHU Caen, Normandie Université (NU)-Tumorothèque de Caen Basse-Normandie (TCBN)-Tumorothèque de Caen Basse-Normandie (TCBN), Biologie, génétique et thérapies ostéoarticulaires et respiratoires (BIOTARGEN), Normandie Université (NU)-Normandie Université (NU), Service d'anatomie pathologique, CHU Bordeaux [Bordeaux], Université Bordeaux Segalen - Bordeaux 2, Service de Génétique [Purpan], CHU Toulouse [Toulouse]-Hôpital Purpan [Toulouse], CHU Toulouse [Toulouse], Unité différenciation épidermique et auto-immunité rhumatoïde (UDEAR), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Santé et de la Recherche Médicale (INSERM), Pôle de Pathologie, Centre de Biologie Pathologie, Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille), Service de génétique clinique [Rennes], Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-CHU Pontchaillou [Rennes]-Hôpital Sud, Unité de recherche interdisciplinaire pour la prévention et le traitement des cancers (ANTICIPE), Normandie Université (NU)-Tumorothèque de Caen Basse-Normandie (TCBN)-Tumorothèque de Caen Basse-Normandie (TCBN)-Centre Régional de Lutte contre le Cancer François Baclesse (CRLC François Baclesse ), Normandie Université (NU)-Tumorothèque de Caen Basse-Normandie (TCBN)-Institut National de la Santé et de la Recherche Médicale (INSERM), service hospitalier d'anatomie et cytologie pathologique humaine, APHM, Marseille, Assistance Publique - Hôpitaux de Marseille (APHM), Laboratoire de génétique chromosomique [Hôpital de la Timone - APHM], Hôpital de la Timone [CHU - APHM] (TIMONE), Marseille medical genetics - Centre de génétique médicale de Marseille (MMG), Aix Marseille Université (AMU)-Institut National de la Santé et de la Recherche Médicale (INSERM), Département de génétique médicale [Hôpital de la Timone - APHM], Aix Marseille Université (AMU)-Assistance Publique - Hôpitaux de Marseille (APHM)- Hôpital de la Timone [CHU - APHM] (TIMONE)-Institut National de la Santé et de la Recherche Médicale (INSERM), Centre de référence des anomalies du développement [Lyon], Hospices Civils de Lyon (HCL), Service de Génétique, Hospices Civils de Lyon (HCL)-Hôpital Louis Pradel [CHU - HCL], Hospices Civils de Lyon (HCL)-Groupe Hospitalier Est, University of Missouri [Columbia], University of Missouri System, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Baylor College of Medicine (BCM), Baylor University, Poznan University of Medical Sciences [Poland] (PUMS), Unité de recherche de l'institut du thorax (ITX-lab), Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Nantes - UFR de Médecine et des Techniques Médicales (UFR MEDECINE), Université de Nantes (UN)-Université de Nantes (UN), Seattle Children’s Hospital, Institute of Mother and Child, Baylor College of Medecine, Kaiser Permanente, Phoenix Children's Hospital, Sydney Children's hospital, The University of Sydney, Prince of Wales Hospital, University of British Columbia (UBC), Akron Children's Hospital, University of Copenhagen = Københavns Universitet (UCPH), AP-HP - Hôpital Antoine Béclère [Clamart], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire de Toulouse (CHU Toulouse), CHU Lille, Centre Hospitalier Lyon Sud [CHU - HCL] (CHLS), Université de Rennes (UR)-CHU Pontchaillou [Rennes]-hôpital Sud, Normandie Université (NU)-Tumorothèque de Caen Basse-Normandie (TCBN)-Tumorothèque de Caen Basse-Normandie (TCBN)-Centre Régional de Lutte contre le Cancer François Baclesse [Caen] (UNICANCER/CRLC), Normandie Université (NU)-UNICANCER-Tumorothèque de Caen Basse-Normandie (TCBN)-UNICANCER-Institut National de la Santé et de la Recherche Médicale (INSERM), Sant’Antonio General Hospital, Università degli Studi di Udine - University of Udine [Italie], Université de Lyon, The University of Tennessee Health Science Center [Memphis] (UTHSC), University of Colorado [Colorado Springs] (UCCS), Washington University School of Medicine in St. Louis, Washington University in Saint Louis (WUSTL), Vanderbilt University Medical Center [Nashville], Vanderbilt University [Nashville], Regeneron Pharmaceuticals [Tarrytown], University of Missouri [Columbia] (Mizzou), University Hospital Southampton NHS Foundation Trust, Universiteit Leiden, University of Copenhagen = Københavns Universitet (KU), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-CHU Pontchaillou [Rennes]-hôpital Sud, CHU Caen, Normandie Université (NU)-Tumorothèque de Caen Basse-Normandie (TCBN)-Normandie Université (NU)-Tumorothèque de Caen Basse-Normandie (TCBN)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre Régional de Lutte contre le Cancer François Baclesse [Caen] (UNICANCER/CRLC), UNICANCER-Tumorothèque de Caen Basse-Normandie (TCBN)-Normandie Université (NU)-UNICANCER, Institut National de la Santé et de la Recherche Médicale (INSERM)-Aix Marseille Université (AMU), and Leiden University
- Subjects
0301 basic medicine ,Lung Diseases ,Male ,Pathology ,Organogenesis ,030105 genetics & heredity ,Fibroblast growth factor ,T-box transcription factor 4 ,Infant, Newborn, Diseases ,Lung ,Genetics (clinical) ,lacrimoauriculodentodigital (LAAD) syndrome ,respiratory system ,Hypoplasia ,3. Good health ,Pedigree ,medicine.anatomical_structure ,lung hypoplasia ,Paternal Inheritance ,Female ,Maternal Inheritance ,Signal Transduction ,medicine.medical_specialty ,DNA Copy Number Variations ,17q23.1q23.2 recurrent deletion ,neonatal lung disease ,Gestational Age ,Biology ,Polymorphism, Single Nucleotide ,Article ,03 medical and health sciences ,5p12 deletion ,Genetics ,medicine ,Humans ,Lung hypoplasia ,Receptor, Fibroblast Growth Factor, Type 2 ,Enhancer ,[SDV.GEN]Life Sciences [q-bio]/Genetics ,FGF10 ,Infant, Newborn ,medicine.disease ,030104 developmental biology ,Gene Expression Regulation ,Dysplasia ,aplasia of lacrimal and salivary glands ,T-Box Domain Proteins ,Fibroblast Growth Factor 10 - Abstract
International audience; Primary defects in lung branching morphogenesis, resulting in neonatal lethal pulmonary hypoplasias, are incompletely understood. To elucidate the pathogenetics of human lung development, we studied a unique collection of samples obtained from deceased individuals with clinically and histopathologically diagnosed interstitial neonatal lung disorders: acinar dysplasia (n = 14), congenital alveolar dysplasia (n = 2), and other lethal lung hypoplasias (n = 10). We identified rare heterozygous copy-number variant deletions or single-nucleotide variants (SNVs) involving TBX4 (n = 8 and n = 2, respectively) or FGF10 (n = 2 and n = 2, respectively) in 16/26 (61%) individuals. In addition to TBX4, the overlapping similar to 2 Mb recurrent and nonrecurrent deletions at 17q23.1q23.2 identified in seven individuals with lung hypoplasia also remove a lung-specific enhancer region. Individuals with coding variants involving either TBX4 or FGF10 also harbored at least one non-coding SNV in the predicted lung-specific enhancer region, which was absent in 13 control individuals with the overlapping deletions but without any structural lung anomalies. The occurrence of rare coding variants involving TBX4 or FGF10 with the putative hypomorphic non-coding SNVs implies a complex compound inheritance of these pulmonary hypoplasias. Moreover, they support the importance of TBX4-FGF10-FGFR2 epithelial-mesenchymal signaling in human lung organogenesis and help to explain the histopathological continuum observed in these rare lethal developmental disorders of the lung.
- Published
- 2019
- Full Text
- View/download PDF
25. Genetics of anophthalmia and microphthalmia. Part 1: Non-syndromic anophthalmia/microphthalmia
- Author
-
C. Zazo Seco, Nicola K. Ragge, Fabiola Ceroni, Patrick Calvas, Julie Plaisancié, Richard J. Holt, Nicolas Chassaing, CARBILLET, Véronique, Centre Hospitalier Universitaire de Toulouse (CHU Toulouse), Centre de Référence pour les Affections Rares en Génétique Ophtalmologique (CARGO) et Service de Génétique Médicale, Hôpitaux Universitaires de Strasbourg, Unité différenciation épidermique et auto-immunité rhumatoïde (UDEAR), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Santé et de la Recherche Médicale (INSERM), Oxford Brookes University, Birmingham Women's and Children's NHS Foundation Trust, CHU Toulouse [Toulouse], Plaisancie J., Ceroni F., Holt R., Zazo Seco C., Calvas P., Chassaing N., and Ragge N.K.
- Subjects
Genetic counseling ,MESH: Exome / genetics ,Biology ,Eye ,MESH: Phenotype ,Microphthalmia ,03 medical and health sciences ,MESH: Eye Abnormalities / genetics ,[SDV.MHEP.MI]Life Sciences [q-bio]/Human health and pathology/Infectious diseases ,Genetics ,medicine ,Animals ,Humans ,Microphthalmos ,Exome ,MESH: Animals ,MESH: Syndrome ,Eye Abnormalities ,Genetics (clinical) ,030304 developmental biology ,0303 health sciences ,Anophthalmia ,MESH: Humans ,Genetic heterogeneity ,030305 genetics & heredity ,Anophthalmos ,MESH: Anophthalmos / genetics ,Syndrome ,MESH: Eye / pathology ,anophthalmia, microphthalmia, coloboma, human eye anomalies ,medicine.disease ,MESH: Microphthalmos / genetics ,Phenotype ,Penetrance ,Human genetics ,3. Good health ,[SDV.MHEP.MI] Life Sciences [q-bio]/Human health and pathology/Infectious diseases - Abstract
International audience; Eye formation is the result of coordinated induction and differentiation processes during embryogenesis. Disruption of any one of these events has the potential to cause ocular growth and structural defects, such as anophthalmia and microphthalmia (A/M). A/M can be isolated or occur with systemic anomalies, when they may form part of a recognizable syndrome. Their etiology includes genetic and environmental factors; several hundred genes involved in ocular development have been identified in humans or animal models. In humans, around 30 genes have been repeatedly implicated in A/M families, although many other genes have been described in single cases or families, and some genetic syndromes include eye anomalies occasionally as part of a wider phenotype. As a result of this broad genetic heterogeneity, with one or two notable exceptions, each gene explains only a small percentage of cases. Given the overlapping phenotypes, these genes can be most efficiently tested on panels or by whole exome/genome sequencing for the purposes of molecular diagnosis. However, despite whole exome/genome testing more than half of patients currently remain without a molecular diagnosis. The proportion of undiagnosed cases is even higher in those individuals with unilateral or milder phenotypes. Furthermore, even when a strong gene candidate is available for a patient, issues of incomplete penetrance and germinal mosaicism make diagnosis and genetic counseling challenging. In this review, we present the main genes implicated in non-syndromic human A/M phenotypes and, for practical purposes, classify them according to the most frequent or predominant phenotype each is associated with. Our intention is that this will allow clinicians to rank and prioritize their molecular analyses and interpretations according to the phenotypes of their patients.
- Published
- 2019
- Full Text
- View/download PDF
26. Severe gynaecological involvement in Proteus Syndrome
- Author
-
Paul Kuentz, Nicolas Chassaing, Maella Severino-Freire, Pierre Vabres, Eliane Mery-Lemarche, Yannis Duffourd, Juliette Mazereeuw-Hautier, Aude Maza, Laurence Faivre, Edith Brazet, CCSD, Accord Elsevier, Service Dermatologie [CHU Toulouse], Pôle Clinique des Voies respiratoires [CHU Toulouse], Centre Hospitalier Universitaire de Toulouse (CHU Toulouse)-Centre Hospitalier Universitaire de Toulouse (CHU Toulouse), Centre de référence des maladies rares de la peau et des muqueuses d’origine génétique [CHU Toulouse] (CRMRP), Centre Hospitalier Universitaire de Toulouse (CHU Toulouse), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées, Lipides - Nutrition - Cancer [Dijon - U1231] (LNC), Université de Bourgogne (UB)-Institut National de la Santé et de la Recherche Médicale (INSERM)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement, Equipe GAD (LNC - U1231), Université de Bourgogne (UB)-Institut National de la Santé et de la Recherche Médicale (INSERM)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Université de Bourgogne (UB)-Institut National de la Santé et de la Recherche Médicale (INSERM)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement, Centre de génétique - Centre de référence des maladies rares, anomalies du développement et syndromes malformatifs (CHU de Dijon), Centre Hospitalier Universitaire de Dijon - Hôpital François Mitterrand (CHU Dijon), Service Gynécologie [CHU Toulouse], Pôle Femme-Mère-Couple [CHU Toulouse], Service Génétique Médicale [CHU Toulouse], Institut Fédératif de Biologie (IFB), Centre Hospitalier Universitaire de Toulouse (CHU Toulouse)-Centre Hospitalier Universitaire de Toulouse (CHU Toulouse)-Pôle Biologie [CHU Toulouse], Service d'Anatomie et Cytopathologie [Toulouse], Institut Universitaire du Cancer de Toulouse - Oncopole (IUCT Oncopole - UMR 1037), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre Hospitalier Universitaire de Toulouse (CHU Toulouse)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre Hospitalier Universitaire de Toulouse (CHU Toulouse)-Institut National de la Santé et de la Recherche Médicale (INSERM), Service de Dermatologie (CHU de Dijon), Service de dermatologie (CHU de Toulouse), CHU Toulouse [Toulouse], Centre de référence des maladies rares de la peau, Centre de référence des maladies rares de la peau, CHU Toulouse, Service de gynécologie-obstétrique [CHU Toulouse], Service de génétique médicale [Toulouse], CHU Toulouse [Toulouse]-Hôpital Purpan [Toulouse], Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-CHU Toulouse [Toulouse]-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Toulouse III - Paul Sabatier (UT3), and Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-CHU Toulouse [Toulouse]-Institut National de la Santé et de la Recherche Médicale (INSERM)
- Subjects
Adult ,medicine.medical_specialty ,Mutation, Missense ,AKT1 ,Proteus syndrome ,[SDV.GEN.GH] Life Sciences [q-bio]/Genetics/Human genetics ,[SDV.MHEP.GEO]Life Sciences [q-bio]/Human health and pathology/Gynecology and obstetrics ,Hysterectomy ,03 medical and health sciences ,0302 clinical medicine ,Genetics ,Medicine ,Complete hysterectomy ,Humans ,Young female ,Genetics (clinical) ,030304 developmental biology ,Uterine Diseases ,0303 health sciences ,business.industry ,General Medicine ,medicine.disease ,Dermatology ,3. Good health ,[SDV.MHEP.GEO] Life Sciences [q-bio]/Human health and pathology/Gynecology and obstetrics ,Phenotype ,[SDV.GEN.GH]Life Sciences [q-bio]/Genetics/Human genetics ,030220 oncology & carcinogenesis ,Overgrowth syndrome ,Mutation (genetic algorithm) ,AKT1 mutation ,Female ,business ,Proto-Oncogene Proteins c-akt ,Gynaecological involvement - Abstract
IF 2.004; International audience; Proteus Syndrome is a rare complex overgrowth syndrome. We report a young female patient with Proteus Syndrome due to AKT1 mutation c.49G > A (p.Glu17Lys), presenting with a severe gynaecological involvement which necessitated a complete hysterectomy and a left adnexectomy. Cases of gynecological involvements in Proteus Syndrome are rare, not well known by physicians while they can be potentially severe.
- Published
- 2019
- Full Text
- View/download PDF
27. Searching for secondary findings: considering actionability and preserving the right not to know
- Author
-
Delphine Dupin-Deguine, Jean-Paul Bonnefont, Catherine Bourgain, Bertrand Isidor, Paul-Loup Weil-Dubuc, Julie Plaisancié, Franck Bourdeaut, Eric Bieth, Laurent Pasquier, Nicolas Chassaing, Kym M. Boycott, Sophie Julia, Benjamin Cogné, Nadège Corradini, Pascale Saugier-Veber, Delphine Héron, Arnold Munnich, Damien Haye, Marie Vincent, Mathilde Nizon, Mauro Turrini, Sylvie Manouvrier, Stéphane Bézieau, Patrick Calvas, Cyril Mignot, Danya F. Vears, PORCHET, Nathalie, Service de génétique médicale - Unité de génétique clinique [Nantes], Université de Nantes (UN)-Centre hospitalier universitaire de Nantes (CHU Nantes), Centre Hospitalier Universitaire de Toulouse (CHU Toulouse), Génomique et Médecine Personnalisée du Cancer et des Maladies Neuropsychiatriques (GPMCND), Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU)-Institut National de la Santé et de la Recherche Médicale (INSERM), Excellence Laboratory LabEx DISTALZ, Centre hospitalier universitaire de Nantes (CHU Nantes), CHU Necker - Enfants Malades [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP), Unité de génétique et biologie des cancers (U830), Université Paris Descartes - Paris 5 (UPD5)-Institut Curie [Paris]-Institut National de la Santé et de la Recherche Médicale (INSERM), CERMES3 - Centre de recherche Médecine, sciences, santé, santé mentale, société (CERMES3 - UMR 8211 / U988 / UM 7), École des hautes études en sciences sociales (EHESS)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Unité différenciation épidermique et auto-immunité rhumatoïde (UDEAR), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Santé et de la Recherche Médicale (INSERM), Département d'Oncologie Pédiatrique [CHU Nantes], Hôpital Mère-Enfant, CHU de Nantes, Département de génétique [Robert Debré], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-AP-HP Hôpital universitaire Robert-Debré [Paris], Service Génétique Médicale [CHU Toulouse], Institut Fédératif de Biologie (IFB), Centre Hospitalier Universitaire de Toulouse (CHU Toulouse)-Centre Hospitalier Universitaire de Toulouse (CHU Toulouse)-Pôle Biologie [CHU Toulouse], CHU Trousseau [APHP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU), Hôpital Jeanne de Flandres, Université de Lille, Droit et Santé-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille), CHU Pontchaillou [Rennes], CHU Pitié-Salpêtrière [AP-HP], University of Ottawa [Ottawa], Université Paris 1 Panthéon-Sorbonne - UFR Philosophie (UP1 UFR10), Université Paris 1 Panthéon-Sorbonne (UP1), Catholic University of Leuven - Katholieke Universiteit Leuven (KU Leuven), University of Melbourne, Murdoch Children's Research Institute (MCRI), Laboratoire de Génétique Moléculaire, CHU Toulouse [Toulouse], Département de Génétique (CHU Necker - Enfants Malades [AP-HP] ), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP), Imagine - Institut des maladies génétiques (IMAGINE - U1163), Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris Descartes - Paris 5 (UPD5)-École des hautes études en sciences sociales (EHESS), Service de génétique médicale [Toulouse], CHU Toulouse [Toulouse]-Hôpital Purpan [Toulouse], Service de génétique médicale, Service de génétique clinique, hôpital Sud, Groupe de recherche clinique 'déficience intellectuelle et autisme', and Université Pierre et Marie Curie - Paris 6 (UPMC)
- Subjects
Genetics, Medical ,[SDV]Life Sciences [q-bio] ,MEDLINE ,Truth Disclosure ,03 medical and health sciences ,Viewpoint ,Genetics ,Humans ,Genetic Predisposition to Disease ,Genetic Testing ,Genetics (clinical) ,Genetic Association Studies ,ComputingMilieux_MISCELLANEOUS ,030304 developmental biology ,0303 health sciences ,Information retrieval ,Genome, Human ,030305 genetics & heredity ,Genomics ,16. Peace & justice ,Europe ,[SDV] Life Sciences [q-bio] ,Practice Guidelines as Topic ,Psychology ,Medical ethics - Abstract
International audience; No abstract available
- Published
- 2019
- Full Text
- View/download PDF
28. Genetic Advances in Microphthalmia
- Author
-
Julie Plaisancié, Nicolas Chassaing, Patrick Calvas, Unité différenciation épidermique et auto-immunité rhumatoïde (UDEAR), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Santé et de la Recherche Médicale (INSERM), and CARBILLET, Véronique
- Subjects
0301 basic medicine ,Genetic counseling ,anophthalmia ,Bioinformatics ,Microphthalmia ,03 medical and health sciences ,[SDV.MHEP.MI]Life Sciences [q-bio]/Human health and pathology/Infectious diseases ,Medicine ,Craniofacial ,genetic advances ,Genetics (clinical) ,Genetic testing ,Genetics ,Anophthalmia ,Molecular screening ,medicine.diagnostic_test ,business.industry ,medicine.disease ,eye diseases ,3. Good health ,030104 developmental biology ,microphthalmia ,eye development ,Pediatrics, Perinatology and Child Health ,[SDV.MHEP.MI] Life Sciences [q-bio]/Human health and pathology/Infectious diseases ,Etiology ,business ,Genetic diagnosis - Abstract
International audience; Congenital ocular anomalies such as anophthalmia and microphthalmia (AM) are severe craniofacial malformations in human. The etiologies of these ocular globe anomalies are diverse but the genetic origin appears to be a predominant cause. Until recently, genetic diagnosis capability was rather limited in AM patients and only a few genes were available for routine genetic testing. While some issues remain poorly understood, knowledge regarding the molecular basis of AM dramatically improved over the last years with the development of new molecular screening technologies. Thus, the genetic cause is now identifiable in more than 50% of patients with a severe bilateral eye phenotype and in around 30% of all AM patients taken together. Such advances in the knowledge of these genetic bases are important as they improve the quality of care, in terms of diagnosis, prognosis, and genetic counseling delivered to the patients and their families.
- Published
- 2016
- Full Text
- View/download PDF
29. Mutational Spectrum in Holoprosencephaly Shows That FGF is a New Major Signaling Pathway
- Author
-
Linda Akloul, Véronique David, Clarisse Baumann, Sylvie Odent, Laurent Pasquier, Christèle Dubourg, Houda Hamdi-Rozé, Daniel Amram, Charlotte Mouden, Pierre Sarda, Sophie Naudion, Amélie Poidvin, Marie Gonzales, Nicolas Chassaing, Valérie Dupé, Fabienne Prieur, Joelle Roume, Marie de Tayrac, Benmansour Abdelmajid, Annie Levy-Mozziconacci, Christine Coubes, Wilfrid Carré, Annick Toutain, Laurence Faivre-Olivier, Emmanuelle Ginglinger, and Sally-Ann Lynch
- Subjects
musculoskeletal diseases ,0301 basic medicine ,Genetics ,congenital, hereditary, and neonatal diseases and abnormalities ,Fibroblast growth factor receptor 1 ,Genetic counseling ,Biology ,Quantitative trait locus ,Bioinformatics ,ZIC2 ,medicine.disease ,3. Good health ,03 medical and health sciences ,030104 developmental biology ,FGF8 ,Holoprosencephaly ,GLI2 ,medicine ,Gene ,Genetics (clinical) - Abstract
Holoprosencephaly (HPE) is the most common congenital cerebral malformation in humans, characterized by impaired forebrain cleavage and midline facial anomalies. It presents a high heterogeneity, both in clinics and genetics. We have developed a novel targeted next-generation sequencing (NGS) assay and screened a cohort of 257 HPE patients. Mutations with high confidence in their deleterious effect were identified in approximately 24% of the cases and were held for diagnosis, whereas variants of uncertain significance were identified in 10% of cases. This study provides a new classification of genes that are involved in HPE. SHH, ZIC2, and SIX3 remain the top genes in term of frequency with GLI2, and are followed by FGF8 and FGFR1. The three minor HPE genes identified by our study are DLL1, DISP1, and SUFU. Here, we demonstrate that fibroblast growth factor signaling must now be considered a major pathway involved in HPE. Interestingly, several cases of double mutations were found and argue for a polygenic inheritance of HPE. Altogether, it supports that the implementation of NGS in HPE diagnosis is required to improve genetic counseling.
- Published
- 2016
- Full Text
- View/download PDF
30. Truncating Mutations in the Adhesion G Protein-Coupled Receptor G2 Gene ADGRG2 Cause an X-Linked Congenital Bilateral Absence of Vas Deferens
- Author
-
Stanislas Faguer, Aurore Siegfried, Valérie Mitchell, Roger Mieusset, Guy Lalau, Laetitia Monteil, Jean-Marc Rigot, Olivier Patat, V. Gaston, François Marcelli, Nicolas Chassaing, Monique Courtade-Saïdi, A. Pagin, Eric Bieth, Louis Bujan, Unité différenciation épidermique et auto-immunité rhumatoïde (UDEAR), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Santé et de la Recherche Médicale (INSERM), CHU Toulouse [Toulouse], Toxicologie et Génopathies [CHRU Lille], Pôle de Biologie Pathologie Génétique [CHU Lille], Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille), Institut Universitaire du Cancer de Toulouse - Oncopole (IUCT Oncopole - UMR 1037), CHU Toulouse [Toulouse]-Université Toulouse III - Paul Sabatier (UT3), Hôpital Jeanne de Flandres, Université de Lille, Droit et Santé-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille), Gamétogenèse et Qualité du Gamète - ULR 4308 (GQG), Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU)-Université de Lille, Département de Néphrologie et Transplantation d'organes, Hôpital de Rangueil, CHU Toulouse [Toulouse]-CHU Toulouse [Toulouse], Groupe de recherche en fertilité humaine ( GRFH), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées, Hôpital Albert Calmette, Hôpital Paule de Viguier, Hôpital Purpan [Toulouse], Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire de Toulouse (CHU Toulouse), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre Hospitalier Universitaire de Toulouse (CHU Toulouse)-Institut National de la Santé et de la Recherche Médicale (INSERM), Département de Néphrologie et Transplantation d'organes [CHU Toulouse], Pôle Urologie - Néphrologie - Dialyse - Transplantations - Brûlés - Chirurgie plastique - Explorations fonctionnelles et physiologiques [CHU Toulouse], Centre Hospitalier Universitaire de Toulouse (CHU Toulouse)-Centre Hospitalier Universitaire de Toulouse (CHU Toulouse), and Université de Toulouse (UT)-Université de Toulouse (UT)
- Subjects
Male ,0301 basic medicine ,DNA Mutational Analysis ,MESH: Exome / genetics ,Cystic Fibrosis Transmembrane Conductance Regulator ,Obstructive azoospermia ,Bioinformatics ,Receptors, G-Protein-Coupled ,Pathogenesis ,Vas Deferens ,0302 clinical medicine ,Male Urogenital Diseases ,Genes, X-Linked ,Genetics(clinical) ,Exome ,MESH: DNA Mutational Analysis ,Genetics (clinical) ,030219 obstetrics & reproductive medicine ,Vas deferens ,MESH: Genes, X-Linked / genetics ,Cystic fibrosis transmembrane conductance regulator ,Pedigree ,medicine.anatomical_structure ,Female ,Infertility ,medicine.medical_specialty ,MESH: Pedigree ,Genetic counseling ,Biology ,03 medical and health sciences ,Report ,Internal medicine ,Genetics ,medicine ,Humans ,MESH: Vas Deferens / abnormalities ,MESH: Humans ,MESH: Receptors, G-Protein-Coupled / genetics ,MESH: Male Urogenital Diseases / genetics ,[SDV.BDLR]Life Sciences [q-bio]/Reproductive Biology ,MESH: Gene Deletion ,medicine.disease ,MESH: Cystic Fibrosis Transmembrane Conductance Regulator / genetics ,MESH: Male ,030104 developmental biology ,Endocrinology ,biology.protein ,MESH: Female ,Gene Deletion - Abstract
International audience; In 80% of infertile men with obstructive azoospermia caused by a congenital bilateral absence of the vas deferens (CBAVD), mutations are identified in the cystic fibrosis transmembrane conductance regulator gene (CFTR). For the remaining 20%, the origin of the CBAVD is unknown. A large cohort of azoospermic men with CBAVD was retrospectively reassessed with more stringent selection criteria based on consistent clinical data, complete description of semen and reproductive excurrent ducts, extensive CFTR testing, and kidney ultrasound examination. To maximize the phenotypic prioritization, men with CBAVD and with unilateral renal agenesis were considered ineligible for the present study. We performed whole-exome sequencing on 12 CFTR-negative men with CBAVD and targeted sequencing on 14 additional individuals. We identified three protein-truncating hemizygous mutations, c.1545dupT (p.Glu516Ter), c.2845delT (p.Cys949AlafsTer81), and c.2002_2006delinsAGA (p.Leu668ArgfsTer21), in ADGRG2, encoding the epididymal- and efferent-ducts-specific adhesion G protein-coupled receptor G2, in four subjects, including two related individuals with X-linked transmission of their infertility. Previous studies have demonstrated that Adgrg2-knockout male mice develop obstructive infertility. Our study confirms the crucial role of ADGRG2 in human male fertility and brings new insight into congenital obstructive azoospermia pathogenesis. In men with CBAVD who are CFTR-negative, ADGRG2 testing could allow for appropriate genetic counseling with regard to the X-linked transmission of the molecular defect.
- Published
- 2016
- Full Text
- View/download PDF
31. Gain-of-Function Mutations inRARBCause Intellectual Disability with Progressive Motor Impairment
- Author
-
André Tremblay, Jacques L. Michaud, Nicolas Chassaing, Rebecca O. Littlejohn, Troy A. Becker, Marie Ange Delrue, Shannon Sattler, Véronique Caron, Zoha Kibar, Sarah B. Nielsen, Virginia Kimonis, Elizabeth Roeder, Pierre Bitoun, Sébastien Lévesque, Fan Xia, Toni S. Pearson, Jill A. Rosenfeld, Sofia Douzgou, Fadi F. Hamdan, Sonal Desai, Michael C. Schneider, Myriam Srour, and Adele Schneider
- Subjects
0301 basic medicine ,Dystonia ,medicine.medical_specialty ,Retinoic acid ,Chorea ,Biology ,medicine.disease ,Microphthalmia ,03 medical and health sciences ,chemistry.chemical_compound ,030104 developmental biology ,0302 clinical medicine ,Endocrinology ,chemistry ,Internal medicine ,Genetics ,medicine ,Diaphragmatic hernia ,Global developmental delay ,Spasticity ,medicine.symptom ,Receptor ,030217 neurology & neurosurgery ,Genetics (clinical) - Abstract
Retinoic acid (RA) signaling plays a key role in the development and function of several systems in mammals. We previously discovered that the de novo mutations c.1159C>T (p.Arg387Cys) and c.1159C>A (p.Arg387Ser) in the RA Receptor Beta (RARB) gene cause microphthalmia and diaphragmatic hernia. However, the natural history of affected subjects beyond the prenatal or neonatal period was unknown. Here, we describe nine additional subjects with microphthalmia who have de novo mutations in RARB, including the previously described p.Arg387Cys as well as the novel c.887G>C (p.Gly296Ala) and c.638T>C (p.Leu213Pro). Moreover, we review the information on four previously reported cases. All subjects who survived the neonatal period (n = 10) displayed severe global developmental delay with progressive motor impairment due to spasticity and/or dystonia (with or without chorea). The majority of subjects also showed Chiari type I malformation and severe feeding difficulties. We previously found that p.Arg387Cys and p.Arg387Ser induce a gain-of-function. We show here that the p.Gly296Ala and p.Leu213Pro RARB mutations further promote the RA ligand-induced transcriptional activity by twofold to threefold over the wild-type receptor, also indicating a gain-of-function mechanism. These observations suggest that precise regulation of RA signaling is required for brain development and/or function in humans.
- Published
- 2016
- Full Text
- View/download PDF
32. Genetic counselling difficulties and ethical implications of incidental findings from array-CGH: a 7-year national survey
- Author
-
Jeanne Amiel, Sophie Julia, Catherine Vincent-Delorme, Christel Thauvin-Robinet, Paul Kuentz, Salima El Chehadeh, Stanislas Lyonnet, Bruno Leheup, Elodie Gautier, Odile Boute-Benejean, Nathalie Le Meur, Sandrine Marlin, Irène François, Delphine Héron, Marianne Till, Patrick Edery, Houda Karmous Benailly, Serge Romana, Nicole Philip, Patrick Callier, Valérie Cormier-Daire, Bénédicte Héron, Adeline Vigouroux-Castera, Mathilde Lefebvre, Chantal Missirian, Sylvie Odent, Fanny Morice-Picard, Roseline Caumes, Dominique Martin, Cédric Le Caignec, Nicolas Chassaing, Claire Benneteau, Anne-Laure Mosca-Boidron, Claude Ferrec, Anne-Marie Guerrot, Sylvie Manouvrier-Hanu, Eva Piparas, Damien Sanlaville, Florence Petit, Stéphanie Arpin, Sébastien Moutton, Marie-Pierre Alex-Cordier, Elodie Cretin, Laurence Faivre, Sabine Sigaudy, Tiffany Busa, Brigitte Gilbert-Dussardier, Sandra Chantot-Bastaraud, Julien Thevenon, Alexandra Afenjar, Annick Toutain, Boris Keren, Anne Philippe, Valérie Malan, Laetitia Lambert, Sandra Mercier, Elise Schaefer, James Lespinasse, Nathalie Marle, Sylvia Redon, Fabienne Giuliano, Isabelle Mortemousque, Philippe Khau Van Kien, Pierre Bitoun, Alice Goldenberg, Sophie Blesson, and Michèle Marti-Dramard
- Subjects
0301 basic medicine ,Genetics ,medicine.medical_specialty ,education.field_of_study ,Ethical issues ,business.industry ,Genetic counseling ,Population ,Retrospective cohort study ,030105 genetics & heredity ,medicine.disease ,Penetrance ,3. Good health ,03 medical and health sciences ,Generalization (learning) ,Family medicine ,Intellectual disability ,Medicine ,business ,education ,Genetics (clinical) ,Comparative genomic hybridization - Abstract
Microarray-based comparative genomic hybridization (aCGH) is commonly used in diagnosing patients with intellectual disability (ID) with or without congenital malformation. Because aCGH interrogates with the whole genome, there is a risk of being confronted with incidental findings (IF). In order to anticipate the ethical issues of IF with the generalization of new genome-wide analysis technologies, we questioned French clinicians and cytogeneticists about the situations they have faced regarding IF from aCGH. Sixty-five IF were reported. Forty corresponded to autosomal dominant diseases with incomplete penetrance, 7 to autosomal dominant diseases with complete penetrance, 14 to X-linked diseases, and 4 were heterozygotes for autosomal recessive diseases with a high prevalence of heterozygotes in the population. Therapeutic/preventive measures or genetic counselling could be argued for all cases except four. These four IF were intentionally not returned to the patients. Clinicians reported difficulties in returning the results in 29% of the cases, mainly when the question of IF had not been anticipated. Indeed, at the time of the investigation, only 48% of the clinicians used consents mentioning the risk of IF. With the emergence of new technologies, there is a need to report such national experiences; they show the importance of pre-test information on IF.
- Published
- 2016
- Full Text
- View/download PDF
33. Implication of non-coding PAX6 mutations in aniridia
- Author
-
C. Jeanton-Scaramouche, Carmen Ayuso, Marta Corton, Lucas Fares-Taie, Patricia Ramos, I. Arroyo, Alice Goldenberg, D. Aguilera, Nicolas Chassaing, Jean-Michel Rozet, V. Gaston, Patrick Calvas, Julie Plaisancié, Fiona Blanco-Kelly, H. Dollfus, Christine Francannet, Cristina Villaverde, Maria Tarilonte, J. C. Kaplan, Unité différenciation épidermique et auto-immunité rhumatoïde (UDEAR), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Santé et de la Recherche Médicale (INSERM), Service de génétique médicale [Toulouse], CHU Toulouse [Toulouse]-Hôpital Purpan [Toulouse], CHU Toulouse [Toulouse], IIS‑Fundación Jiménez Diaz‑Autonoma University [Madrid, Spain], CIBER de Enfermedades Raras (CIBERER), Centre de Référence pour les Affections Rares en Génétique Ophtalmologique (CARGO) et Service de Génétique Médicale, Hôpitaux Universitaires de Strasbourg, Imagine - Institut des maladies génétiques (IMAGINE - U1163), Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM), Service de Génétique Médicale [CHU Clermont-Ferrand], CHU Estaing [Clermont-Ferrand], CHU Clermont-Ferrand-CHU Clermont-Ferrand, Service de génétique [Rouen], CHU Rouen, Normandie Université (NU)-Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU), and Department of Genetics, Hospital of Caceres
- Subjects
Male ,0301 basic medicine ,Untranslated region ,PAX6 Transcription Factor ,Genome ,[SDV.MHEP.MI]Life Sciences [q-bio]/Human health and pathology/Infectious diseases ,MESH: Child ,Coding region ,Child ,3' Untranslated Regions ,Aniridia ,Genetics (clinical) ,MESH: Middle Aged ,Non-coding mutation ,MESH: 3' Untranslated Regions ,Middle Aged ,Enhancer Elements, Genetic ,Child, Preschool ,Female ,Adult ,MESH: Mutation ,Adolescent ,Locus (genetics) ,Computational biology ,Biology ,MESH: Genetic Loci ,03 medical and health sciences ,5′UTR ,MESH: Aniridia / genetics ,Genetics ,medicine ,Humans ,Minigene assay ,MESH: Adolescent ,MESH: Humans ,MESH: PAX6 Transcription Factor / genetics ,Eye development ,MESH: Child, Preschool ,Cis-regulatory region ,MESH: Adult ,medicine.disease ,Human genetics ,eye diseases ,MESH: Male ,PAX6 ,030104 developmental biology ,Genetic Loci ,Mutation ,sense organs ,MESH: Enhancer Elements, Genetic ,MESH: Female ,Minigene - Abstract
International audience; There is an increasing implication of non-coding regions in pathological processes of genetic origin. This is partly due to the emergence of sophisticated techniques that have transformed research into gene expression by allowing a more global understanding of the genome, both at the genomic, epigenomic and chromatin levels. Here, we implemented the analysis of PAX6, whose coding loss-of-function variants are mainly implied in aniridia, by studying its non-coding regions (untranslated regions, introns and cis-regulatory sequences). In particular, we have taken advantage of the development of high-throughput approaches to screen the upstream and downstream regulatory regions of PAX6 in 47 aniridia patients without identified mutation in the coding sequence. This was made possible through the use of custom targeted resequencing and/or CGH array to analyze the entire PAX6 locus on 11p13. We found candidate variants in 30 of the 47 patients. 9/30 correspond to the well-known described 3' deletions encompassing SIMO and other enhancer elements. In addition, we identified numerous different variants in various non-coding regions, in particular untranslated regions. Among these latter, most of them demonstrated an in vitro functional effect using a minigene strategy, and 12/21 are thus considered as causative mutations or very likely to explain the phenotypes. This new analysis strategy brings molecular diagnosis to more than 90% of our aniridia patients. This study revealed an outstanding mutation pattern in non-coding PAX6 regions confirming that PAX6 remains the major gene for aniridia.
- Published
- 2018
- Full Text
- View/download PDF
34. FOXE3 mutations: Genotype-phenotype correlations
- Author
-
H. Dollfus, Gilles Morin, J. C. Kaplan, Christine Francannet, Hélène Colineaux, Nicola K. Ragge, Daphné Lehalle, Nicolas Chassaing, Julie Plaisancié, Patrick Calvas, Unité différenciation épidermique et auto-immunité rhumatoïde (UDEAR), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Santé et de la Recherche Médicale (INSERM), Service de génétique médicale [Toulouse], CHU Toulouse [Toulouse]-Hôpital Purpan [Toulouse], CHU Toulouse [Toulouse], Oxford Brookes University, West Midlands Regional Genetics Service, Birmingham Women's and Children's NHS Foundation Trust, Centre de Référence pour les Affections Rares en Génétique Ophtalmologique (CARGO) et Service de Génétique Médicale, Hôpitaux Universitaires de Strasbourg, Genetics in Ophthalmology (Equipe Inserm U1163), Imagine - Institut des maladies génétiques (IHU) (Imagine - U1163), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Paris (UP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Paris (UP), Centre de génétique - Centre de référence des maladies rares, anomalies du développement et syndromes malformatifs (CHU de Dijon), Centre Hospitalier Universitaire de Dijon - Hôpital François Mitterrand (CHU Dijon), Service de Génétique Médicale [CHU Clermont-Ferrand], CHU Estaing [Clermont-Ferrand], CHU Clermont-Ferrand-CHU Clermont-Ferrand, Service de Génétique Clinique et Oncogénétique, Centre Hospitalier Universitaire d'Amiens Picardie, Amiens, France, Epidémiologie et analyses en santé publique : risques, maladies chroniques et handicaps (LEASP), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Toulouse III - Paul Sabatier (UT3), and Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées
- Subjects
0301 basic medicine ,Male ,MESH: Developmental Disabilities / physiopathology ,genetic structures ,genotype-phenotype correlations ,Developmental Disabilities ,anophthalmia ,Microphthalmia ,MESH: Forkhead Transcription Factors / genetics ,0302 clinical medicine ,[SDV.MHEP.MI]Life Sciences [q-bio]/Human health and pathology/Infectious diseases ,Microphthalmos ,Eye Abnormalities ,MESH: Developmental Disabilities / genetics ,Genetics (clinical) ,Genetics ,Forkhead Transcription Factors ,MESH: Aphakia / physiopathology ,Phenotype ,3. Good health ,cataract ,Mutation (genetic algorithm) ,Female ,MESH: Mutation ,Genetic counseling ,MESH: Eye Abnormalities / physiopathology ,Biology ,MESH: Aphakia / genetics ,03 medical and health sciences ,Dysgenesis ,MESH: Genetic Predisposition to Disease ,medicine ,Humans ,Genetic Predisposition to Disease ,Sclerocornea ,Gene ,MESH: Microphthalmos / physiopathology ,Alleles ,Anophthalmia ,MESH: Humans ,MESH: Alleles ,aphakia ,MESH: Microphthalmos / genetics ,medicine.disease ,eye diseases ,MESH: Male ,030104 developmental biology ,microphthalmia ,MESH: Eye Abnormalities / genetics ,Mutation ,eye development ,030221 ophthalmology & optometry ,anterior segment dysgenesis ,FOXE3 ,sense organs ,MESH: Female - Abstract
International audience; Microphthalmia and anophthalmia (MA) are severe developmental eye anomalies, many of which are likely to have an underlying genetic cause. More than 30 genes have been described, each of which is responsible for a small percentage of these anomalies. Among these, is the FOXE3 gene, which was initially described in individuals with dominantly inherited anterior segment dysgenesis and, subsequently, associated with recessively inherited primary aphakia, sclerocornea and microphthalmia. In this work, we describe 8 individuals presenting with an MA phenotype. Among them, 7 are carrying biallelic recessive FOXE3 mutations and 2 of these have novel mutations: p.(Ala78Thr) and p.(Arg104Cys). The last of our patients is carrying in the heterozygous state the recessive p.(Arg90Leu) mutation in the FOXE3 gene. To further understand FOXE3 involvement in this wide spectrum of ocular anomalies with 2 different patterns of inheritance, we reviewed all individuals with ocular abnormalities described in the literature for which a FOXE3 mutation was identified. This review demonstrates that correlations exist between the mutation type, mode of inheritance and the phenotype severity. Furthermore, understanding the genetic basis of these conditions will contribute to overall understanding of eye development, improve the quality of care, genetic counseling and, in future, gene-based therapies.
- Published
- 2018
- Full Text
- View/download PDF
35. Characterization of glycosylphosphatidylinositol biosynthesis defects by clinical features, flow cytometry, and automated image analysis
- Author
-
Tzung-Chien Hsieh, Yaron Gurovich, Helenius Jurgen Schelhaas, Natasha J Brown, Peter Krawitz, Ingo Helbig, Ewa Obersztyn, Denise Horn, Max Schubach, Stefan Mundlos, Nicolas Chassaing, Yvonne G. Weber, Sebastian Koehler, Alexej Knaus, Hiltrud Muhle, Steven A. Skinner, Patrick Calvas, Peter N. Robinson, Max Zhao, Christian Korff, Nurulhuda Hajjir, Nicole Fleischer, Manuela Pendziwiat, Myrthe van den Born, Hannah Warren, Agnieszka Charzewska, Marten Jäger, Milda Endziniene, Raymond J. Louie, Marc Bohn, Fanny Kortuem, Jean Tori Pantel, Christina Evers, Hans Jürgen Christen, Allan Bayat, Rikke S. Møller, Charité - UniversitätsMedizin = Charité - University Hospital [Berlin], Max Planck Institute for Molecular Genetics (MPIMG), Max-Planck-Gesellschaft, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, University Medical Center of Schleswig–Holstein = Universitätsklinikum Schleswig-Holstein (UKSH), Kiel University, Berlin Institute of Health (BIH), FDNA Inc, Université de Genève (UNIGE), Danish Epilepsy Centre, Denmark and Aarhus University, Aarhus, University of Southern Denmark (SDU), University Hospital of Copenhagen, Hvidovre Hospital, Unité différenciation épidermique et auto-immunité rhumatoïde (UDEAR), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Santé et de la Recherche Médicale (INSERM), The Greenwood Genetic Center, UniversitätsKlinikum Heidelberg, St. Bernward-Krankenhaus, Erasmus University Medical Center [Rotterdam] (Erasmus MC), Institute of Mother and Child, Lithuanian University of Health Sciences [Kaunas, Lithuania], Universitaetsklinikum Hamburg-Eppendorf = University Medical Center Hamburg-Eppendorf [Hamburg] (UKE), Royal Children's Hospital, Austin Health, Academic Center for Epileptology Kempenhaeghe & Maastricht UMC+ [Heeze], University of Tübingen, Children’s Hospital of Philadelphia (CHOP ), German Ministry of Research and Education German Research Foundation, and Clinical Genetics
- Subjects
0301 basic medicine ,MESH: Abnormalities, Multiple / metabolism ,Glycosylphosphatidylinositols ,lcsh:Medicine ,Biomarkers/metabolism ,Bioinformatics ,Gene ,Correlation ,Automation ,0302 clinical medicine ,MESH: Automation ,[SDV.MHEP.MI]Life Sciences [q-bio]/Human health and pathology/Infectious diseases ,Intellectual disability ,Image Processing, Computer-Assisted ,MESH: Syndrome ,Genetics (clinical) ,Genetics ,0303 health sciences ,ddc:618 ,medicine.diagnostic_test ,MESH: Flow Cytometry / methods ,Phosphorus Metabolism Disorders/metabolism ,Phosphorus Metabolism Disorders ,Syndrome ,Flow Cytometry ,MESH: Phosphorus Metabolism Disorders / metabolism ,MESH: Image Processing, Computer-Assisted ,Phenotype ,Pathophysiology ,Hypotonia ,MESH: Glycosylphosphatidylinositols / biosynthesis ,MESH: Intellectual Disability / metabolism ,Molecular Medicine ,Alkaline phosphatase ,medicine.symptom ,Prediction ,lcsh:QH426-470 ,Glycosylphosphatidylinositols/biosynthesis ,Anchor biosynthesis defects ,Intellectual Disability/metabolism ,Biology ,MESH: Phenotype ,Flow cytometry ,Automated image analysis ,03 medical and health sciences ,Intellectual Disability ,medicine ,Humans ,Abnormalities, Multiple ,Molecular Biology ,030304 developmental biology ,MESH: Humans ,Research ,lcsh:R ,medicine.disease ,Flow Cytometry/methods ,Human genetics ,Abnormalities, Multiple/metabolism ,lcsh:Genetics ,MESH: Biomarkers / metabolism ,030104 developmental biology ,GPI ,Biomarkers ,030217 neurology & neurosurgery - Abstract
BackgroundGlycosylphosphatidylinositol Biosynthesis Defects (GPIBDs) cause a group of phenotypically overlapping recessive syndromes with intellectual disability, for which pathogenic mutations have been described in 16 genes of the corresponding molecular pathway. An elevated serum activity of alkaline phosphatase (AP), a GPI-linked enzyme, has been used to assign GPIBDs to the phenotypic series of Hyperphosphatasia with Mental Retardation Syndrome (HPMRS) and to distinguish them from another subset of GPIBDs, termed Multiple Congenital Anomalies Hypotonia Seizures syndrome (MCAHS). However, the increasing number of individuals with a GPIBD shows that hyperphosphatasia is a variable feature that is not ideal for a clinical classification.MethodsWe studied the discriminatory power of multiple GPI-linked substrates that were assessed by flow cytometry in blood cells and fibroblasts of 39 and 14 individuals with a GPIBD, respectively. On the phenotypic level, we evaluated the frequency of occurrence of clinical symptoms and analyzed the performance of computer-assisted image analysis of the facial gestalt in 91 individuals.ResultsWe found that certain malformations such as Morbus Hirschsprung and Diaphragmatic defects are more likely to be associated with particular gene defects (PIGV, PGAP3, PIGN). However, especially at the severe end of the clinical spectrum of HPMRS, there is a high phenotypic overlap with MCAHS. Elevation of AP has also been documented in some of the individuals with MCAHS, namely those with PIGA mutations. Although the impairment of GPI-linked substrates is supposed to play the key role in the pathophysiology of GPIBDs, we could not observe gene-specific profiles for flow cytometric markers or a correlation between their cell surface levels and the severity of the phenotype. In contrast, it was facial recognition software that achieved the highest accuracy in predicting the disease-causing gene in a GPIBD.ConclusionsDue to the overlapping clinical spectrum of both, HPMRS and MCAHS, in the majority of affected individuals, the elevation of AP and the reduced surface levels of GPI-linked markers in both groups, a common classification as GPIBDs is recommended. The effectiveness of computer-assisted gestalt analysis for the correct gene inference in a GPIBD and probably beyond is remarkable and illustrates how the information contained in human faces is pivotal in the delineation of genetic entities.
- Published
- 2018
- Full Text
- View/download PDF
36. Dental and extra-oral clinical features in 41 patients with WNT10A gene mutations: a multicentric genotype-phenotype study
- Author
-
A. Mallet, Hélène Dollfus, Marie-Cécile Manière, E. Consolino, E. Sfeir, Agnès Bloch-Zupan, Nicole Philip, François Clauss, Karen Niederreither, Sophie Jung, Megana K. Prasad, B. Noueiri, Nicolas Chassaing, Smail Hadj-Rabia, C. Tardieu, Génétique Médicale et Génomique Fonctionnelle (GMGF), Aix Marseille Université (AMU)-Assistance Publique - Hôpitaux de Marseille (APHM)- Hôpital de la Timone [CHU - APHM] (TIMONE)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Département de génétique médicale [Hôpital de la Timone - APHM], Aix Marseille Université (AMU)-Assistance Publique - Hôpitaux de Marseille (APHM)- Hôpital de la Timone [CHU - APHM] (TIMONE)-Institut National de la Santé et de la Recherche Médicale (INSERM), and Institut National de la Santé et de la Recherche Médicale (INSERM)- Hôpital de la Timone [CHU - APHM] (TIMONE)-Assistance Publique - Hôpitaux de Marseille (APHM)-Aix Marseille Université (AMU)
- Subjects
0301 basic medicine ,Adult ,Pathology ,medicine.medical_specialty ,Heterozygote ,Adolescent ,Ectoderm ,Mandible ,Biology ,Gene mutation ,Compound heterozygosity ,bone ,dental phenotype ,Sciences du Vivant [q-bio]/Génétique ,Cohort Studies ,03 medical and health sciences ,Young Adult ,0302 clinical medicine ,Genetics ,medicine ,Humans ,oligodontia ,Child ,Gene ,Genetics (clinical) ,Genetic Association Studies ,Homozygote ,Wnt signaling pathway ,Cone-Beam Computed Tomography ,Middle Aged ,medicine.disease ,Phenotype ,3. Good health ,Wnt Proteins ,Hypodontia ,030104 developmental biology ,medicine.anatomical_structure ,[SDV.GEN.GH]Life Sciences [q-bio]/Genetics/Human genetics ,Dysplasia ,Mutation ,WNT10A mutation ,Tooth ,030217 neurology & neurosurgery ,extra-ectodermal signs - Abstract
WNT10A gene encodes a canonical wingless pathway signaling molecule involved in cell fate specification as well as morphogenetic patterning of the developing ectoderm, nervous system, skeleton, and tooth. In patients, WNT10A mutations are responsible for ectodermal-derived pathologies including isolated hypo-oligodontia, tricho-odonto-onycho-dermal dysplasia (TOODD) and Schöpf-Schulz-Passarge Syndrome (SSPS). Here we describe the dental, ectodermal, and extra-ectodermal phenotypic features of a cohort of 41 patients from 32 unrelated families. Correlations with WNT10A molecular status (heterozygous carrier, compound heterozygous, homozygous) and patient's phenotypes were performed. Mild to severe oligodontia was observed in all patients bearing biallelic WNT10A mutations. However, patients with compound heterozygous mutations presented no significant difference in phenotypes compared to homozygous individuals. Anomalies in tooth morphology were frequently observed with heterozygous patients displaying hypodontia. No signs of SSPS, especially eyelids cysts, were detected in our cohort. Interestingly, extra-ectodermal signs consisted of skeletal, neurological and vascular anomalies, the latter suggesting a wider phenotypic spectrum associated with WNT10A mutations. Indeed, the Wnt pathway plays a crucial role in skeletal development, lipid metabolism, and neurogenesis, potentially explaining patient's clinical manifestations. journal article 2017 Jan 20 2017 01 20 imported
- Published
- 2017
- Full Text
- View/download PDF
37. Dominant variants in the splicing factor PUF60 cause a recognizable syndrome with intellectual disability, heart defects and short stature
- Author
-
Matthieu P. Robert, Salima El Chehadeh, Geert Vandeweyer, Candace Bensignor, Wilhelmina S. Kerstjens-Frederikse, Darina Prchalova, Hélène Dollfus, Jean-Baptiste Rivière, Christel Thauvin-Robinet, Paul Kuentz, Edwin Reyniers, Patrick Calvas, Caroline Bonnet, Marketa Havlovicova, Rodica Isaiko, Vincent Laugel, Nicolas Chassaing, Julien Thevenon, Christian Gilissen, Morgane Straub, Laurence Faivre, Yannis Duffourd, Miroslava Hancarova, Bart Loeys, R. Frank Kooy, Ange-Line Bruel, Rolph Pfundt, Catherine Creuzot-Garcher, Jolien S. Klein Wassink-Ruiter, Zdenek Sedlacek, FHU TRANSLAD, Centre Hospitalier Universitaire de Dijon - Hôpital François Mitterrand ( CHU Dijon ), Service de génétique médicale, CHU Strasbourg-Hôpital de Hautepierre [Strasbourg], Centre de génétique - Centre de référence des maladies rares, anomalies du développement et syndromes malformatifs (CHU de Dijon), Génétique des Anomalies du Développement ( GAD ), IFR100 - Structure fédérative de recherche Santé-STIC-Université de Bourgogne ( UB ), Service de pédiatrie (CHU de Dijon), Service d'Ophtalmologie (CHU de Dijon), Service de Cardiologie (hôpital général, CHU Dijon), Hôpital général (CHU Dijon), Centre Hospitalier Universitaire de Dijon - Hôpital François Mitterrand (CHU Dijon)-Centre Hospitalier Universitaire de Dijon - Hôpital François Mitterrand (CHU Dijon), Centre Hospitalier Universitaire de Dijon - Hôpital François Mitterrand (CHU Dijon), Equipe GAD (LNC - U1231), Lipides - Nutrition - Cancer [Dijon - U1231] (LNC), Université de Bourgogne (UB)-Institut National de la Santé et de la Recherche Médicale (INSERM)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Université de Bourgogne (UB)-Institut National de la Santé et de la Recherche Médicale (INSERM)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement, Institut de génétique et biologie moléculaire et cellulaire (IGBMC), Université Louis Pasteur - Strasbourg I-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), CHU Strasbourg, Génétique des Anomalies du Développement (GAD), Université de Bourgogne (UB)-IFR100 - Structure fédérative de recherche Santé-STIC, Unité différenciation épidermique et auto-immunité rhumatoïde (UDEAR), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Santé et de la Recherche Médicale (INSERM), FHU TRANSLAD (CHU de Dijon), IFR100 - Structure fédérative de recherche Santé-STIC-Université de Bourgogne (UB), Service de Cardiologie, and Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Institut National de la Santé et de la Recherche Médicale (INSERM)
- Subjects
0301 basic medicine ,Male ,MESH: Heart Defects, Congenital / physiopathology ,Microcephaly ,Pathology ,MESH: Heart Defects, Congenital / genetics ,MESH: Exome / genetics ,030105 genetics & heredity ,MESH: RNA Splicing / genetics ,Microphthalmia ,[SDV.MHEP.MI]Life Sciences [q-bio]/Human health and pathology/Infectious diseases ,MESH: Child ,Exome ,MESH: RNA Splicing Factors / genetics ,Child ,Frameshift Mutation ,MESH: High-Throughput Nucleotide Sequencing ,Genetics (clinical) ,Exome sequencing ,Coloboma ,MESH: Frameshift Mutation ,High-Throughput Nucleotide Sequencing ,Microdeletion syndrome ,Microcephaly, Verheij syndrome, PUF60 ,Chemistry ,Phenotype ,Child, Preschool ,DISEASES ,Medical genetics ,Female ,RNA Splicing Factors ,medicine.symptom ,Chromosome Deletion ,Chromosomes, Human, Pair 8 ,MESH: Dwarfism / genetics ,Heart Defects, Congenital ,medicine.medical_specialty ,GENES ,Adolescent ,RNA Splicing ,MESH: Chromosome Deletion ,Dwarfism ,Biology ,MESH: Phenotype ,Short stature ,Article ,PUF60 ,03 medical and health sciences ,Internal medicine ,Intellectual Disability ,[ SDV.MHEP ] Life Sciences [q-bio]/Human health and pathology ,Genetics ,medicine ,Humans ,Craniofacial ,MESH: Adolescent ,Neurodevelopmental disorders Donders Center for Medical Neuroscience [Radboudumc 7] ,MESH: Humans ,MESH: Child, Preschool ,medicine.disease ,MESH: Repressor Proteins / genetics ,MESH: Male ,Repressor Proteins ,030104 developmental biology ,Endocrinology ,MESH: Chromosomes, Human, Pair 8 / genetics ,MESH: Dwarfism / physiopathology ,MESH: Intellectual Disability / physiopathology ,Human medicine ,MESH: Intellectual Disability / genetics ,Verheij syndrome ,MESH: Female ,[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology - Abstract
Item does not contain fulltext Verheij syndrome, also called 8q24.3 microdeletion syndrome, is a rare condition characterized by ante- and postnatal growth retardation, microcephaly, vertebral anomalies, joint laxity/dislocation, developmental delay (DD), cardiac and renal defects and dysmorphic features. Recently, PUF60 (Poly-U Binding Splicing Factor 60 kDa), which encodes a component of the spliceosome, has been discussed as the best candidate gene for the Verheij syndrome phenotype, regarding the cardiac and short stature phenotype. To date, only one patient has been reported with a de novo variant in PUF60 that probably affects function (c.505C>T leading to p.(His169Tyr)) associated with DD, microcephaly, craniofacial and cardiac defects. Additional patients were required to confirm the pathogenesis of this association and further delineate the clinical spectrum. Here we report five patients with de novo heterozygous variants in PUF60 identified using whole exome sequencing. Variants included a splice-site variant (c.24+1G>C), a frameshift variant (p.(Ile136Thrfs*31)), two nonsense variants (p.(Arg448*) and p.(Lys301*)) and a missense change (p.(Val483Ala)). All six patients with a PUF60 variant (the five patients of the present study and the unique reported patient) have the same core facial gestalt as 8q24.3 microdeletions patients, associated with DD. Other findings include feeding difficulties (3/6), cardiac defects (5/6), short stature (5/6), joint laxity and/or dislocation (5/6), vertebral anomalies (3/6), bilateral microphthalmia and irido-retinal coloboma (1/6), bilateral optic nerve hypoplasia (2/6), renal anomalies (2/6) and branchial arch defects (2/6). These results confirm that PUF60 is a major driver for the developmental, craniofacial, skeletal and cardiac phenotypes associated with the 8q24.3 microdeletion.
- Published
- 2017
- Full Text
- View/download PDF
38. Molecular findings and clinical data in a cohort of 150 patients with anophthalmia/microphthalmia
- Author
-
Marie-Line Jacquemont, Christel Thauvin-Robinet, Didier Lacombe, Josseline Kaplan, Odile Boute-Benejean, Bertrand Isidor, Dominique Martin-Coignard, Fabienne Giuliano, Chloé Quélin, J.-L. Alessandri, Lucile Pinson, Sabine Sigaudy, H. Dollfus, Adeline Vigouroux, Michèle Mathieu-Dramard, Odile Boespflug-Tanguy, Brigitte Gilbert-Dussardier, Alexandre Causse, Marie Gonzales, Sylvie Odent, Andrée Delahaye, Nicolas Chassaing, Muriel Holder-Espinasse, P Calvas, Bénédicte Duban-Bedu, Annick Toutain, and Olivier Picone
- Subjects
Genetics ,Anophthalmia ,Genetic heterogeneity ,Genetic counseling ,Biology ,medicine.disease ,Microphthalmia ,eye diseases ,3. Good health ,Testis determining factor ,Multiplex polymerase chain reaction ,medicine ,Homeobox ,sense organs ,Gene ,Genetics (clinical) - Abstract
Anophthalmia and microphthalmia (AM) are the most severe malformations of the eye, corresponding respectively to reduced size or absent ocular globe. Wide genetic heterogeneity has been reported and different genes have been demonstrated to be causative of syndromic and non-syndromic forms of AM. We screened seven AM genes [GDF6 (growth differentiation factor 6), FOXE3 (forkhead box E3), OTX2 (orthodenticle protein homolog 2), PAX6 (paired box 6), RAX (retina and anterior neural fold homeobox), SOX2 (SRY sex determining region Y-box 2), and VSX2 (visual system homeobox 2 gene)] in a cohort of 150 patients with isolated or syndromic AM. The causative genetic defect was identified in 21% of the patients (32/150). Point mutations were identified by direct sequencing of these genes in 25 patients (13 in SOX2, 4 in RAX, 3 in OTX2, 2 in FOXE3, 1 in VSX2, 1 in PAX6, and 1 in GDF6). In addition eight gene deletions (five SOX2, two OTX2 and one RAX) were identified using a semi-quantitative multiplex polymerase chain reaction (PCR) [quantitative multiplex PCR amplification of short fluorescent fragments (QMPSF)]. The causative genetic defect was identified in 21% of the patients. This result contributes to our knowledge of the molecular basis of AM, and will facilitate accurate genetic counselling.
- Published
- 2013
- Full Text
- View/download PDF
39. Mutation analysis of theSTRA6gene in isolated and non-isolated anophthalmia/microphthalmia
- Author
-
J Martinovic, Ariana Kariminejad, P Calvas, A Buffet, Siavash Ghaderi-Sohi, Nicola K. Ragge, and Nicolas Chassaing
- Subjects
Genetics ,Cryptophthalmos ,congenital, hereditary, and neonatal diseases and abnormalities ,Mutation ,Anophthalmia ,endocrine system diseases ,Heterozygote advantage ,Biology ,medicine.disease_cause ,medicine.disease ,Compound heterozygosity ,Microphthalmia ,digestive system diseases ,eye diseases ,Agenesis ,medicine ,Missense mutation ,Genetics (clinical) - Abstract
PDAC syndrome [Pulmonary hypoplasia/agenesis, Diaphragmatic hernia/eventration, Anophthalmia/microphthalmia (A/M) and Cardiac Defect] is a condition associated with recessive mutations in the STRA6 gene in some of these patients. Recently, cases with isolated anophthalmia have been associated with STRA6 mutations. To determine the minimal findings associated with STRA6 mutations, we performed mutation analysis of the STRA6 gene in 28 cases with anophthalmia. In 7 of the cases the anophthalmia was isolated, in 14 cases it was associated with one of the major features included in PDAC and 7 had other abnormalities. Mutations were identified in two individuals: one with bilateral anophthalmia and some features included in PDAC, who was a compound heterozygote for a missense mutation and a large intragenic deletion, and the second case with all the major features of PDAC and who had a homozygous splicing mutation. This study suggests that STRA6 mutations are more likely to be identified in individuals with A/M and other abnormalities included in the PDAC spectrum, rather than in isolated A/M cases.
- Published
- 2013
- Full Text
- View/download PDF
40. Mutations inWNT10Aare frequently involved in oligodontia associated with minor signs of ectodermal dysplasia
- Author
-
Encarna Guillén-Navarro, Sabine Sigaudy, Christine Coubes, Ghislaine Plessis, Dominique Martin-Coignard, Marc Abramowicz, Philippe Jonveaux, Catherine Vincent-Delorme, Frédéric Vaysse, Isabelle Bailleul-Forestier, Estelle Colin, V. Gaston, Nicolas Chassaing, Didier Lacombe, Bénédicte Demeer, Muriel Holder-Espinasse, Patrick Calvas, Julie Plaisancié, Hélène Dollfus, Eric Bieth, Alain Verloes, and Laurence Faivre
- Subjects
Male ,Ectodermal dysplasia ,Genotype ,Molecular Sequence Data ,medicine.disease_cause ,Compound heterozygosity ,Ectodermal Dysplasia ,Genetics ,medicine ,Humans ,Amino Acid Sequence ,Hypohidrotic ectodermal dysplasia ,Genetic Association Studies ,Genetics (clinical) ,Anodontia ,Mutation ,EDARADD ,Edar Receptor ,Genetic heterogeneity ,business.industry ,medicine.disease ,Wnt Proteins ,Hypodontia ,Phenotype ,Female ,Ectodysplasin A ,business ,Sequence Alignment - Abstract
Ectodermal dysplasias (ED) are a clinically and genetically heterogeneous group of hereditary disorders that have in common abnormal development of ectodermal derivatives. Hypohidrotic ectodermal dysplasia (HED) is characterized by abnormal development of eccrine sweat glands, hair, and teeth. The X-linked form of the disease, caused by mutations in the EDA gene, represents the majority of patients with the hypohidrotic form. Autosomal dominant and autosomal recessive forms are occasionally seen, and result from mutations in at least three genes (WNT10A, EDAR, or more rarely EDARADD). We have screened for mutations in EDAR (commonly involved in the hypohidrotic form) and WNT10A (involved in a wide spectrum of ED and in isolated hypodontia) in a cohort of 36 patients referred for EDA molecular screening, which failed to identify any mutation. We identified eight EDAR mutations in five patients (two with homozygous mutations, one with compound heterozygous mutations, and two with heterozygous mutation), four of which were novel variants. We identified 28 WNT10A mutations in 16 patients (5 with homozygous mutations, 7 with compound heterozygous mutations, and 4 with heterozygous mutations), seven of which were novel variants. Our study allows a more precise definition of the phenotypic spectrum associated with EDAR and WNT10A mutations and underlines the importance of the implication of WNT10A among patients with ED. © 2013 Wiley Periodicals, Inc.
- Published
- 2013
- Full Text
- View/download PDF
41. ALDH1A3 Mutations Cause Recessive Anophthalmia and Microphthalmia
- Author
-
Sylvie Gerber, Eduardo Silva, Valérie Serre, Jean-Michel Rozet, Stanislas Lyonnet, Sylvain Hanein, Bénédicte Demeer, Ghislaine Plessis, P Calvas, Lionel Bretillon, Lucas Fares-Taie, Christine Bole, Nicola K. Ragge, Jill Clayton-Smith, Xavier Gérard, Arnold Munnich, Clarisse Baumann, Margaux Serey, Patrick Nitschke, Josseline Kaplan, Nicolas Chassaing, Kaplan, Josseline, and Rozet, Jean-Michel
- Subjects
Male ,Genetic Linkage ,Retinoic acid ,Genes, Recessive ,Biology ,medicine.disease_cause ,Microphthalmia ,chemistry.chemical_compound ,symbols.namesake ,Chromosome Segregation ,Report ,medicine ,Genetics ,Food and Nutrition ,Humans ,Microphthalmos ,Missense mutation ,Genetics(clinical) ,Genetics (clinical) ,Exome sequencing ,Sanger sequencing ,Mutation ,Anophthalmia ,Homozygote ,Anophthalmos ,Exons ,Sequence Analysis, DNA ,Aldehyde Dehydrogenase ,Disease gene identification ,medicine.disease ,Aldehyde Oxidoreductases ,Molecular biology ,Introns ,eye diseases ,Pedigree ,HEK293 Cells ,chemistry ,Alimentation et Nutrition ,symbols ,Female ,Mutant Proteins ,sense organs - Abstract
Anophthalmia and microphthalmia (A/M) are early-eye-development anomalies resulting in absent or small ocular globes, respectively. A/M anomalies occur in syndromic or nonsyndromic forms. They are genetically heterogeneous, some mutations in some genes being responsible for both anophthalmia and microphthalmia. Using a combination of homozygosity mapping, exome sequencing, and Sanger sequencing, we identified homozygosity for one splice-site and two missense mutations in the gene encoding the A3 isoform of the aldehyde dehydrogenase 1 (ALDH1A3) in three consanguineous families segregating A/M with occasional orbital cystic, neurological, and cardiac anomalies. ALDH1A3 is a key enzyme in the formation of a retinoic acid gradient along the dorso-ventral axis during early eye development. Transitory expression of mutant ALDH1A3 open reading frames showed that both missense mutations reduce the accumulation of the enzyme, potentially leading to altered retinoic acid synthesis. Although the role of retinoic acid signaling in eye development is well established, our findings provide genetic evidence of a direct link between retinoic-acid-synthesis dysfunction and early-eye-development anomalies in humans.
- Published
- 2013
- Full Text
- View/download PDF
42. Otocephaly-Dysgnathia Complex: Description of Four Cases and Confirmation of the Role of OTX2
- Author
-
J. Tantau, Nicole Corsten-Janssen, Nicolas Chassaing, C.M.A. van Ravenswaaij-Arts, Trijntje Dijkhuizen, O. Patat, J.P. van Tintelen, and J. Kaplan
- Subjects
Otocephaly ,Genetics ,Agnathia ,business.industry ,Aplasia ,medicine.disease ,Bioinformatics ,Microphthalmia ,Phenotype ,Mutation (genetic algorithm) ,medicine ,Homeobox ,business ,Orthodenticle homeobox 2 ,Genetics (clinical) - Abstract
Otocephaly-dysgnathia complex is characterized by mandibular hypo- or aplasia, ear abnormalities, microstomia, and microglossia. Mutations in the orthodenticle homeobox 2 (OTX2) and paired related homeobox 1 (PRRX1) genes have recently been identified in some cases. We screened 4 otocephalic cases for these 2 genes and identified OTX2 mutations in 2 of them, thus confirming OTX2 is implicated in otocephaly. No PRRX1 mutation was identified. Interestingly, ocular involvement is not a constant feature in otocephalic cases with an OTX2 mutation. In one case, the mutation was inherited from a microphthalmic mother. The mechanism underlying this intrafamilial phenotypic variability remains unclear, but other genetic factors are likely to be necessary for the manifestation of the otocephalic phenotype.
- Published
- 2013
- Full Text
- View/download PDF
43. Incomplete penetrance of biallelic ALDH1A3 mutations
- Author
-
Sylvie Gerber, Dominique Bremond-Gignac, V. Gaston, Bénédicte Demeer, Jean-Michel Rozet, Lucas Fares-Taie, Alain Verloes, Nicolas Chassaing, Patrick Calvas, Julie Plaisancié, Unité différenciation épidermique et auto-immunité rhumatoïde (UDEAR), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Santé et de la Recherche Médicale (INSERM), CHU Necker - Enfants Malades [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP), Service de génétique médicale, CHU Amiens-Picardie, Service de génétique médicale [Toulouse], CHU Toulouse [Toulouse]-Hôpital Purpan [Toulouse], CHU Toulouse [Toulouse], AP-HP Hôpital universitaire Robert-Debré [Paris], Imagine - Institut des maladies génétiques (IMAGINE - U1163), and Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)
- Subjects
0301 basic medicine ,MESH: Eye / pathology ,030105 genetics & heredity ,medicine.disease_cause ,Eye ,Microphthalmia ,MESH: Genotype ,[SDV.MHEP.MI]Life Sciences [q-bio]/Human health and pathology/Infectious diseases ,MESH: Child ,Microphthalmos ,Child ,Genetics (clinical) ,MESH: Anophthalmos / pathology ,MESH: Genetic Association Studies ,Genetics ,MESH: Microphthalmos / pathology ,Mutation ,MESH: Anophthalmos / genetics ,General Medicine ,Phenotype ,Penetrance ,Aldehyde Oxidoreductases ,MESH: Aldehyde Oxidoreductases / genetics ,3. Good health ,Pedigree ,Female ,MESH: Mutation ,Genotype ,MESH: Pedigree ,Genetic counseling ,MESH: Tretinoin / metabolism ,Tretinoin ,Biology ,MESH: Phenotype ,03 medical and health sciences ,medicine ,Humans ,Anophthalmia ,ALDH1A3 ,Gene ,Genetic Association Studies ,Incomplete penetrance ,MESH: Humans ,Genetic heterogeneity ,Eye development ,Anophthalmos ,medicine.disease ,MESH: Microphthalmos / genetics ,eye diseases ,030104 developmental biology ,MESH: Eye / growth & development ,MESH: Female - Abstract
International audience; The formation of a properly shaped eye is a complex developmental event that requires the coordination of many induction processes and differentiation pathways. Microphthalmia and anophthalmia (MA) represent the most severe defects that can affect the ocular globe during embryonic development. When genetic, these ocular disorders exhibit large genetic heterogeneity and extreme variable expressivity. Around 20 monogenic diseases are known to be associated with MA as main phenotype and the penetrance of mutations is usually full in the patients. Some of these genes encode proteins involved in the vitamin A pathway, tightly regulated during eye development. One of those retinoic acid synthesis genes is ALDH1A3 and biallelic mutations in that gene have been recently found to lead to MA phenotype in patients. Interestingly, we report here the lack of ocular defect in a girl carrying the same homozygous mutation in the ALDH1A3 gene than the affected members of her family. Thus, this report brings new information for the phenotype-genotype correlation of ALDH1A3 mutations and raises important questions, especially in terms of genetic counselling given to the patients and their families. Furthermore, these data contribute to the more general understanding that we have for the complex genetic inheritance of these MA phenotypes.
- Published
- 2016
- Full Text
- View/download PDF
44. The expanding spectrum of COL2A1 gene variants IN 136 patients with a skeletal dysplasia phenotype
- Author
-
Albert David, Chloé Quélin, Clarisse Baumann-Morel, Eric Bieth, Bruno Dumont, Judith Melki, Elise Shaeffer, Yves Alembik, Fabienne Giuliano, Christel Thauvin, Nicolas Chassaing, Sophie Julia, Anne-Lise Delezoide, Marine Lebrun, Tiffany Busa, Geneviève Baujat, David Geneviève, Séverine Audebert, Yline Capri, Patricia Blanchet, Martine Le Merrer, Sandrine Marlin, Mouna Barat-Houari, Marianne Till, Nicole Philip, Laurence Faivre, Patrick Calvas, Karine Nguyen, Alice Masurel, Vidrica Ciorca, François Cartault, Jacqueline Vigneron, Alice Goldenberg, Jelena Martinovic, Monique Mozelle-Nivoix, Renaud Touraine, Ghislaine Plessis, Marie-Line Jacquemont, Jean-Luc Alessandri, Delphine Dupin-Deguine, Valérie Cormier-Daire, Aurélie Fabre, Jeanne Amiel, Marie Brechard, Bertrand Isidor, Salima El Chehadeh, Sylvie Odent, Isabelle Touitou, Josseline Kaplan, Dominique Martin-Coignard, Lucile Pinson, Sabine Sigaudy, Christine Coubes, Didier Lacombe, Frédéric Tm Them, Cellules Souches, Plasticité Cellulaire, Médecine Régénératrice et Immunothérapies (IRMB), Université de Montpellier (UM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre Hospitalier Régional Universitaire [Montpellier] (CHRU Montpellier), Centre Hospitalier Régional Universitaire [Montpellier] (CHRU Montpellier), Hôpital de Hautepierre [Strasbourg], Centre Hospitalier Universitaire de La Réunion (CHU La Réunion), Génétique et épigénétique des maladies métaboliques, neurosensorielles et du développement (Inserm U781), Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM), Service de Génétique [Purpan], CHU Toulouse [Toulouse]-Hôpital Purpan [Toulouse], CHU Toulouse [Toulouse], Génétique Médicale et Génomique Fonctionnelle (GMGF), Institut National de la Santé et de la Recherche Médicale (INSERM)-Aix Marseille Université (AMU)-Assistance Publique - Hôpitaux de Marseille (APHM)- Hôpital de la Timone [CHU - APHM] (TIMONE)-Centre National de la Recherche Scientifique (CNRS), Centre Hospitalier Universitaire de Toulouse, Département de génétique, Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Hôpital Robert Debré-Université Paris Diderot - Paris 7 (UPD7), Service de Génétique [CHU La Réunion], Centre hospitalier universitaire de Nantes (CHU Nantes), Service de Biologie du Développement, Service de génétique médicale, Centre de génétique - Centre de référence des maladies rares, anomalies du développement et syndromes malformatifs (CHU de Dijon), Centre Hospitalier Universitaire de Dijon - Hôpital François Mitterrand (CHU Dijon), Hôpital l'Archet, Service de génétique [Rouen], CHU Rouen, Normandie Université (NU)-Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU), Service de génétique médicale - Unité de génétique clinique [Nantes], Université de Nantes (UN)-Centre hospitalier universitaire de Nantes (CHU Nantes), Service de génétique médicale [Toulouse], Imagine - Institut des maladies génétiques (IMAGINE - U1163), Université de Bordeaux (UB)-CHU Bordeaux [Bordeaux]-Groupe hospitalier Pellegrin, CHU Trousseau [APHP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU), Service de génétique, Centre Hospitalier Le Mans (CH Le Mans), Service de foetopathologie, Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Université Paris Descartes - Paris 5 (UPD5)-CHU Necker - Enfants Malades [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP), CHU Dijon, Centre Hospitalier Universitaire de Dijon - Hôpital François Mitterrand (CHU Dijon)-Centre Hospitalier Universitaire de Dijon - Hôpital François Mitterrand (CHU Dijon), Hôpital Bicêtre, Université Paris-Sud - Paris 11 (UP11)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Hôpital Bicêtre, Département de génétique médicale [Hôpital de la Timone - APHM], Aix Marseille Université (AMU)-Assistance Publique - Hôpitaux de Marseille (APHM)- Hôpital de la Timone [CHU - APHM] (TIMONE)-Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique ), Service de Génétique, Assistance Publique - Hôpitaux de Marseille (APHM)- Hôpital de la Timone [CHU - APHM] (TIMONE), Service de Génétique [CHU Caen], Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-CHU Caen, Normandie Université (NU)-Tumorothèque de Caen Basse-Normandie (TCBN)-Tumorothèque de Caen Basse-Normandie (TCBN), Service de génétique clinique [Rennes], Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-CHU Pontchaillou [Rennes]-hôpital Sud, Service de cytogénétique constitutionnelle, Hospices Civils de Lyon (HCL)-CHU de Lyon-Centre Neuroscience et Recherche, Service de Génétique Clinique Chromosomique et Moléculaire, CHU Saint-Etienne-Hôpital Nord - Saint-Etienne, Centre Hospitalier Régional Universitaire de Nancy (CHRU Nancy), CHU Necker - Enfants Malades [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP), Institut de génétique humaine (IGH), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Université Montpellier 2 - Sciences et Techniques ( UM2 ) -Centre Hospitalier Régional Universitaire [Montpellier] ( CHRU Montpellier ), Centre Hospitalier Régional Universitaire [Montpellier] ( CHRU Montpellier ), Service de cytogénétique, CHU Strasbourg-Hôpital de Hautepierre [Strasbourg], Service de Réanimation Néonatale et Pédiatrique, CHD Félix Guyon, Génétique et épigénétique des maladies métaboliques, neurosensorielles et du développement ( Inserm U781 ), Université Paris Descartes - Paris 5 ( UPD5 ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ), Génétique Médicale et Génomique Fonctionnelle ( GMGF ), Aix Marseille Université ( AMU ) -Assistance Publique - Hôpitaux de Marseille ( APHM ) - Hôpital de la Timone [CHU - APHM] ( TIMONE ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre National de la Recherche Scientifique ( CNRS ), Assistance publique - Hôpitaux de Paris (AP-HP)-Hôpital Robert Debré-Université Paris Diderot - Paris 7 ( UPD7 ), Service de Genetique, Service de Génétique Clinique, Centre hospitalier universitaire de Nantes ( CHU Nantes ), Centre Hospitalier Universitaire de Dijon - Hôpital François Mitterrand ( CHU Dijon ), CHU Rouen-Université de Rouen Normandie ( UNIROUEN ), Normandie Université ( NU ) -Normandie Université ( NU ), Université de Nantes ( UN ) -Centre hospitalier universitaire de Nantes ( CHU Nantes ), Centre Hospitalier Universitaire de La Réunion ( CHU La Réunion ), Imagine - Institut des maladies génétiques ( IMAGINE - U1163 ), Université Paris Descartes - Paris 5 ( UPD5 ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre National de la Recherche Scientifique ( CNRS ), Université de Bordeaux ( UB ) -CHU Bordeaux [Bordeaux]-Groupe hospitalier Pellegrin, CH Le Mans, Assistance publique - Hôpitaux de Paris (AP-HP)-Université Paris Descartes - Paris 5 ( UPD5 ) -CHU Necker - Enfants Malades [AP-HP], Centre Hospitalier Universitaire de Dijon - Hôpital François Mitterrand ( CHU Dijon ) -Centre Hospitalier Universitaire de Dijon - Hôpital François Mitterrand ( CHU Dijon ), Université Paris-Sud - Paris 11 ( UP11 ) -Assistance publique - Hôpitaux de Paris (AP-HP)-Hôpital Bicêtre, Institut National de la Santé et de la Recherche Médicale ( INSERM ) - Hôpital de la Timone [CHU - APHM] ( TIMONE ) -Assistance Publique - Hôpitaux de Marseille ( APHM ) -Aix Marseille Université ( AMU ), Institut de Génétique et Développement de Rennes ( IGDR ), Université de Rennes 1 ( UR1 ), Université de Rennes ( UNIV-RENNES ) -Université de Rennes ( UNIV-RENNES ) -Centre National de la Recherche Scientifique ( CNRS ) -Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique ), Assistance Publique - Hôpitaux de Marseille ( APHM ) - Hôpital de la Timone [CHU - APHM] ( TIMONE ), CHU Caen-Hôpital Clémenceau, Université de Rennes ( UNIV-RENNES ) -Université de Rennes ( UNIV-RENNES ) -CHU Pontchaillou [Rennes]-Hôpital Sud, Hospices Civils de Lyon ( HCL ) -CHU de Lyon-Centre Neuroscience et Recherche, Centre Hospitalier Régional Universitaire de Nancy ( CHRU Nancy ), Université de Montpellier ( UM ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre Hospitalier Régional Universitaire [Montpellier] ( CHRU Montpellier ), Centre Hospitalier Régional Universitaire [Montpellier] (CHRU Montpellier)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM), Service Génétique Médicale [CHU Toulouse], Institut Fédératif de Biologie (IFB), Centre Hospitalier Universitaire de Toulouse (CHU Toulouse)-Centre Hospitalier Universitaire de Toulouse (CHU Toulouse)-Pôle Biologie [CHU Toulouse], Centre Hospitalier Universitaire de Toulouse (CHU Toulouse), Aix Marseille Université (AMU)-Assistance Publique - Hôpitaux de Marseille (APHM)- Hôpital de la Timone [CHU - APHM] (TIMONE)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique ), Université de Rennes (UR)-CHU Pontchaillou [Rennes]-hôpital Sud, and Centre Hospitalier Universitaire de Saint-Etienne [CHU Saint-Etienne] (CHU ST-E)
- Subjects
0301 basic medicine ,Proband ,Male ,Candidate gene ,Hearing Loss, Sensorineural ,[SDV]Life Sciences [q-bio] ,Biology ,Osteochondrodysplasias ,Article ,03 medical and health sciences ,symbols.namesake ,Kniest dysplasia ,Protein Domains ,Genetics ,medicine ,Humans ,Connective Tissue Diseases ,Collagen Type II ,Genetics (clinical) ,Sanger sequencing ,[ SDV ] Life Sciences [q-bio] ,Arthritis ,Collagen Diseases ,Retinal Detachment ,medicine.disease ,Phenotype ,Human genetics ,3. Good health ,Pedigree ,030104 developmental biology ,Amino Acid Substitution ,Dysplasia ,Spondyloepiphyseal dysplasia congenita ,symbols ,Female - Abstract
International audience; Heterozygous COL2A1 variants cause a wide spectrum of skeletal dysplasia termed type II collagenopathies. We assessed the impact of this gene in our French series. A decision tree was applied to select 136 probands (71 Stickler cases, 21 Spondyloepiphyseal dysplasia congenita cases, 11 Kniest dysplasia cases, and 34 other dysplasia cases) before molecular diagnosis by Sanger sequencing. We identified 66 different variants among the 71 positive patients. Among those patients, 18 belonged to multiplex families and 53 were sporadic. Most variants (38/44, 86%) were located in the triple helical domain of the collagen chain and glycine substitutions were mainly observed in severe phenotypes, whereas arginine to cysteine changes were more often encountered in moderate phenotypes. This series of skeletal dysplasia is one of the largest reported so far, adding 44 novel variants (15%) to published data. We have confirmed that about half of our Stickler patients (46%) carried a COL2A1 variant, and that the molecular spectrum was different across the phenotypes. To further address the question of genotype-phenotype correlation, we plan to screen our patients for other candidate genes using a targeted next-generation sequencing approach.European Journal of Human Genetics advance online publication, 2 December 2015; doi:10.1038/ejhg.2015.250
- Published
- 2016
- Full Text
- View/download PDF
45. Targeted resequencing identifies PTCH1 as a major contributor to ocular developmental anomalies and extends the SOX2 regulatory network
- Author
-
Nicolas Chassaing, Josseline Kaplan, Catherine Vincent-Delorme, Adrienne R. Niederriter, Sophie Lamarre, Stanislas Faguer, Nicholas Katsanis, Kelly L. McKnight, Erica E. Davis, Didier Lacombe, Annaïck Desmaison, Jean-Louis Dufier, Massimiliano Rossi, Christine Coubes, Laurent Pasquier, Heather C. Etchevers, Alexandre Causse, Hélène Dollfus, Patrick Calvas, Véronique David, Hôpital Purpan [Toulouse], CHU Toulouse [Toulouse], Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées, Unité différenciation épidermique et auto-immunité rhumatoïde (UDEAR), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique ), Service de biologie moléculaire, Hôpital Pontchaillou, Institut des Technologies Avancées en sciences du Vivant (ITAV), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés (LISBP), Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de la Recherche Agronomique (INRA), Centre de Maladies Rares, Anomalies du Développement Nord de France-CH Arras - CHRU Lille, CHU Pontchaillou [Rennes], Service de Génétique Clinique, Centre Hospitalier Régional Universitaire [Montpellier] (CHRU Montpellier), Service de génétique médicale, Université de Bordeaux (UB)-CHU Bordeaux [Bordeaux]-Groupe hospitalier Pellegrin, Centre de recherche en neurosciences de Lyon (CRNL), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Service d'ophtalmologie [CHU Necker], CHU Necker - Enfants Malades [AP-HP]-Assistance publique - Hôpitaux de Paris (AP-HP) (APHP), Centre de Référence pour les Affections Rares en Génétique Ophtalmologique (CARGO) et Service de Génétique Médicale, Hôpitaux Universitaires de Strasbourg, Imagine - Institut des maladies génétiques (IMAGINE - U1163), Centre National de la Recherche Scientifique (CNRS)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM), Université Paris Descartes - Paris 5 (UPD5), Center for Human Disease Modeling, Duke University [Durham], Département de Néphrologie et Transplantation d'organes, Hôpital de Rangueil, CHU Toulouse [Toulouse]-CHU Toulouse [Toulouse], Centre de référence des maladies rénales rares, CHU Toulouse [Toulouse]-Hôpital de Rangueil, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), PHRC 09 109 01, Clinical Research Hospital Program from the French Ministry of Health, Retina France, Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM), Duke University Medical Center, Université de Toulouse (UT), Centre Hospitalier Universitaire de Toulouse (CHU Toulouse), Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique ), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Institut National de la Recherche Agronomique (INRA)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Hôpital Jeanne de Flandres, Université de Lille, Droit et Santé-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille), Centre de recherche en neurosciences de Lyon - Lyon Neuroscience Research Center (CRNL), Université de Lyon-Université de Lyon-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-CHU Necker - Enfants Malades [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP), Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM), Département de Néphrologie et Transplantation d'organes [CHU Toulouse], Pôle Urologie - Néphrologie - Dialyse - Transplantations - Brûlés - Chirurgie plastique - Explorations fonctionnelles et physiologiques [CHU Toulouse], Centre Hospitalier Universitaire de Toulouse (CHU Toulouse)-Centre Hospitalier Universitaire de Toulouse (CHU Toulouse), Centre de Référence du sud-Ouest des maladies rénales rares [CHU Toulouse] (SODARE), Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique )-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES), Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées, Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Toulouse III - Paul Sabatier (UT3), Assistance publique - Hôpitaux de Paris (AP-HP) (APHP)-CHU Necker - Enfants Malades [AP-HP], Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Centre Hospitalier Universitaire de Toulouse, Institut de Génétique et Développement de Rennes ( IGDR ), Université de Rennes 1 ( UR1 ), Université de Rennes ( UNIV-RENNES ) -Université de Rennes ( UNIV-RENNES ) -Centre National de la Recherche Scientifique ( CNRS ) -Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique ), Institut des Technologies Avancées en sciences du Vivant ( ITAV ), Université Toulouse III - Paul Sabatier ( UPS ), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique ( CNRS ), Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés ( LISBP ), Institut National de la Recherche Agronomique ( INRA ) -Institut National des Sciences Appliquées - Toulouse ( INSA Toulouse ), Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ) -Centre National de la Recherche Scientifique ( CNRS ), Centre Hospitalier Régional Universitaire [Montpellier] ( CHRU Montpellier ), Université de Bordeaux ( UB ) -CHU Bordeaux [Bordeaux]-Groupe hospitalier Pellegrin, Inserm U1028, équipe TIGER, Centre de recherche en neurosciences de Lyon ( CRNL ), Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-Université de Lyon-Université Jean Monnet [Saint-Étienne] ( UJM ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-Université de Lyon-Université Jean Monnet [Saint-Étienne] ( UJM ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre National de la Recherche Scientifique ( CNRS ) -Service de Génétique, Hospices Civils de Lyon ( HCL ) -Hôpital Louis Pradel [CHU - HCL], Hospices Civils de Lyon ( HCL ) -Groupe Hospitalier Est-Hospices Civils de Lyon ( HCL ) -Hôpital Louis Pradel [CHU - HCL], Hospices Civils de Lyon ( HCL ) -Groupe Hospitalier Est, Assistance publique - Hôpitaux de Paris (AP-HP)-CHU Necker - Enfants Malades [AP-HP], Imagine - Institut des maladies génétiques ( IMAGINE - U1163 ), Centre National de la Recherche Scientifique ( CNRS ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Université Paris Descartes - Paris 5 ( UPD5 ), Duke university [Durham], Institut des Maladies Métaboliques et Cardiovasculaires ( I2MC ), Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Hôpital de Rangueil, and CHU Toulouse [Toulouse]-CHU Toulouse [Toulouse]-Université Toulouse III - Paul Sabatier ( UPS )
- Subjects
0301 basic medicine ,Patched ,Candidate gene ,Heterozygote ,endocrine system ,Biology ,Microphthalmia ,Frameshift mutation ,03 medical and health sciences ,[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Genomics [q-bio.GN] ,Genetics ,medicine ,Missense mutation ,Animals ,Humans ,Gene Regulatory Networks ,Eye Abnormalities ,Sonic hedgehog ,[SDV.BDD]Life Sciences [q-bio]/Development Biology ,Genetics (clinical) ,Alleles ,Zebrafish ,Anophthalmia ,[ SDV ] Life Sciences [q-bio] ,SOXB1 Transcription Factors ,Research ,Sequence Analysis, DNA ,medicine.disease ,Patched-1 Receptor ,Disease Models, Animal ,030104 developmental biology ,Phenotype ,PTCH1 ,Gene Expression Regulation ,Genetic Loci ,Case-Control Studies ,Mutation ,embryonic structures ,biology.protein - Abstract
Ocular developmental anomalies (ODA) such as anophthalmia/microphthalmia (AM) or anterior segment dysgenesis (ASD) have an estimated combined prevalence of 3.7 in 10,000 births. Mutations in SOX2 are the most frequent contributors to severe ODA, yet account for a minority of the genetic drivers. To identify novel ODA loci, we conducted targeted high-throughput sequencing of 407 candidate genes in an initial cohort of 22 sporadic ODA patients. Patched 1 (PTCH1), an inhibitor of sonic hedgehog (SHH) signaling, harbored an enrichment of rare heterozygous variants in comparison to either controls, or to the other candidate genes (four missense and one frameshift); targeted resequencing of PTCH1 in a second cohort of 48 ODA patients identified two additional rare nonsynonymous changes. Using multiple transient models and a CRISPR/Cas9-generated mutant, we show physiologically relevant phenotypes altering SHH signaling and eye development upon abrogation of ptch1 in zebrafish for which in vivo complementation assays using these models showed that all six patient missense mutations affect SHH signaling. Finally, through transcriptomic and ChIP analyses, we show that SOX2 binds to an intronic domain of the PTCH1 locus to regulate PTCH1 expression, findings that were validated both in vitro and in vivo. Together, these results demonstrate that PTCH1 mutations contribute to as much as 10% of ODA, identify the SHH signaling pathway as a novel effector of SOX2 activity during human ocular development, and indicate that ODA is likely the result of overactive SHH signaling in humans harboring mutations in either PTCH1 or SOX2.
- Published
- 2016
- Full Text
- View/download PDF
46. OTX2mutations contribute to the otocephaly-dysgnathia complex
- Author
-
Patrick Calvas, Susanna Sorrentino, Ahmet Yesilyurt, Consolato Sergi, Dominique Carles, Hülya Kayserili, Ona Faye-Petersen, Dominique Martin-Coignard, Anthony J. Iacovelli, Adeline Vigouroux, Surasak Puvabanditsin, Nicolas Chassaing, Nicholas Katsanis, Philippe Loget, Ethylin Wang Jabs, William A. Paznekas, Férechté Encha-Razavi, Erica E. Davis, Simeon A. Boyadjiev, Catherine Mercer, Bryn D. Webb, Leopoldine Lequeux, Heather C. Etchevers, and Chih Ping Chen
- Subjects
Otocephaly ,Embryo, Nonmammalian ,Molecular Sequence Data ,Locus (genetics) ,Microphthalmia ,Jaw Abnormalities ,Holoprosencephaly ,Genetics ,medicine ,Animals ,Humans ,Zebrafish ,Genetics (clinical) ,Loss function ,Otx Transcription Factors ,Anophthalmia ,Base Sequence ,biology ,Genetic heterogeneity ,Sequence Analysis, DNA ,medicine.disease ,Dysgnathia ,biology.organism_classification ,Pedigree ,Disease Models, Animal ,Female - Abstract
Background Otocephaly or dysgnathia complex is characterised by mandibular hypoplasia/agenesis, ear anomalies, microstomia, and microglossia; the molecular basis of this developmental defect is largely unknown in humans. Methods and results This study reports a large family in which two cousins with micro/anophthalmia each gave birth to at least one child with otocephaly, suggesting a genetic relationship between anophthalmia and otocephaly. OTX2 , a known microphthalmia locus, was screened in this family and a frameshifting mutation was found. The study subsequently identified in one unrelated otocephalic patient a sporadic OTX2 mutation. Because OTX2 mutations may not be sufficient to cause otocephaly, the study assayed the potential of otx2 to modify craniofacial phenotypes in the context of known otocephaly gene suppression in vivo. It was found that otx2 can interact genetically with pgap1 , prrx1 , and msx1 to exacerbate mandibular and midline defects during zebrafish development. However, sequencing of these loci in the OTX2-positive families did not unearth likely pathogenic lesions, suggesting further genetic heterogeneity and complexity. Conclusion Identification of OTX2 involvement in otocephaly/dysgnathia in humans, even if loss of function mutations at this locus does not sufficiently explain the complex anatomical defects of these patients, suggests the requirement for a second genetic hit. Consistent with this notion, trans suppression of otx2 and other developmentally related genes recapitulate aspects of the otocephaly phenotype in zebrafish. This study highlights the combined utility of genetics and functional approaches to dissect both the regulatory pathways that govern craniofacial development and the genetics of this disease group.
- Published
- 2012
- Full Text
- View/download PDF
47. Phenotypic spectrum associated with CASK loss-of-function mutations
- Author
-
Gökhan Uyanik, Udo Koehler, Richard H Scott, Nicolas Chassaing, Birgit Zirn, Neophytos Apeshiotis, Marisol Heise, Bettina Chilian, Ute Grasshoff, Gudrun A. Rappold, Bertrand Isidor, Ute Moog, Tatjana Bierhals, Gregor Schlüter, Christine Coubes, Hilde Van Esch, Stefanie Balg, Kerstin Kutsche, Barbara Oehl-Jaschkowitz, Hartmut Engels, William B. Dobyns, Joanna Jarvis, Eva Wohlleber, Günther Rettenberger, Isabella Rau, Soma Das, Els Ortibus, Moonef Shoukier, Thomas Martin, Prab Prabhakar, Fanny Kortüm, and Daniela T. Pilz
- Subjects
Heterozygote ,medicine.medical_specialty ,Pathology ,Microcephaly ,Genotype ,Molecular Sequence Data ,Gene Dosage ,Neuroimaging ,Postnatal microcephaly ,Biology ,Real-Time Polymerase Chain Reaction ,Cohort Studies ,03 medical and health sciences ,0302 clinical medicine ,Gene Duplication ,Intellectual Disability ,Molecular genetics ,Genetics ,medicine ,Humans ,CASK ,Child ,Cerebellar hypoplasia ,Genetic Association Studies ,In Situ Hybridization, Fluorescence ,Genetics (clinical) ,Sequence Deletion ,030304 developmental biology ,0303 health sciences ,Optic nerve hypoplasia ,Base Sequence ,Brain ,Genetic Variation ,Infant ,medicine.disease ,Null allele ,Molecular biology ,Hypotonia ,Phenotype ,Child, Preschool ,Karyotyping ,Female ,medicine.symptom ,Guanylate Kinases ,Biomarkers ,030217 neurology & neurosurgery - Abstract
Background Heterozygous mutations in the CASK gene in Xp11.4 have been shown to be associated with a distinct brain malformation phenotype in females, including disproportionate pontine and cerebellar hypoplasia. Methods The study characterised the CASK alteration in 20 new female patients by molecular karyotyping, fluorescence in situ hybridisation, sequencing, reverse transcriptase (RT) and/or quantitative real-time PCR. Clinical and brain imaging data of a total of 25 patients were reviewed. Results 11 submicroscopic copy number alterations, including nine deletions of ∼11 kb to 4.5 Mb and two duplications, all covering (part of) CASK , four splice, four nonsense, and one 1 bp deletion are reported. These heterozygous CASK mutations most likely lead to a null allele. Brain imaging consistently showed diffuse brainstem and cerebellar hypoplasia with a dilated fourth ventricle, but of remarkably varying degrees. Analysis of 20 patients in this study, and five previously reported patients, revealed a core clinical phenotype comprising severe developmental delay/intellectual disability, severe postnatal microcephaly, often associated with growth retardation, (axial) hypotonia with or without hypertonia of extremities, optic nerve hypoplasia, and/or other eye abnormalities. A recognisable facial phenotype emerged, including prominent and broad nasal bridge and tip, small or short nose, long philtrum, small chin, and/or large ears. Conclusions These findings define the phenotypic spectrum associated with CASK loss-of-function mutations. The combination of developmental and brain imaging features together with mild facial dysmorphism is highly suggestive of this disorder and should prompt subsequent testing of the CASK gene.
- Published
- 2011
- Full Text
- View/download PDF
48. A 17q12 chromosomal duplication associated with renal disease and esophageal atresia
- Author
-
Nicolas Chassaing, Stanislas Faguer, Stéphane Decramer, Benoit Arveiler, Dominique Chauveau, Patrick Calvas, Flavio Bandin, Marie-Béatrice Nogier, Cathie Prouheze, and Caroline Rooryck
- Subjects
Adult ,Male ,Heterozygote ,medicine.medical_specialty ,Trisomy ,Disease ,Neurological disorder ,Biology ,Gastroenterology ,Epilepsy ,Internal medicine ,Diabetes mellitus ,Gene duplication ,Genetics ,medicine ,Humans ,Child ,Esophageal Atresia ,Genetics (clinical) ,Hepatocyte Nuclear Factor 1-beta ,Retrospective Studies ,Kidney ,Infant ,General Medicine ,HNF1B ,medicine.disease ,Phenotype ,medicine.anatomical_structure ,Endocrinology ,Child, Preschool ,Atresia ,Mutation ,Female ,Kidney Diseases ,Chromosomes, Human, Pair 17 - Abstract
Chromosomal imbalance of the 17q12 region (which includes the HNF1B transcription factor) has recently emerged as a frequent condition. 17q12 deletion was found in patients with various renal abnormalities, diabetes mellitus (MODY type 5), genital tract or liver test abnormalities, while 17q12 duplication was identified in a subset of patients with autism, mental retardation, epilepsy and/or schizophrenia but no renal disorder. We report here two first-degree relatives carrying a 17q12 duplication and harboring various renal abnormalities (bilateral hypoplastic kidneys with vesico-ureteric reflux or multicystic dysplatic kidney with contralateral hyperechogenic kidney). Esophageal atresia (EA) type C was identified at birth in one patient while none had neurological disorder. Because EA has already been identified in patients with 17q12 duplication or HNF1B point mutation, we screened HNF1B (QMPSF and direct sequencing) in nine additional patients with EA and renal abnormalities but failed to identify any pathogenic variant. This is the second report of HNF1B mutation associated with EA. Moreover, we showed herein, that renal malformations may be part of the 17q12 duplication syndrome.
- Published
- 2011
- Full Text
- View/download PDF
49. A 10 Mb duplication in chromosome band 5q31.3–5q33.1 associated with late-onset lipodystrophy, ichthyosis, epilepsy and glomerulonephritis
- Author
-
Annachiara De Sandre-Giovannoli, Nicolas Chassaing, Stanislas Faguer, Adeline Vigouroux, Laurence Lamant, Benoit Arveiler, Nicolas Lévy, Cathie Prouheze, Michèle Hemery, Patrick Calvas, Caroline Rooryck, and Dominique Chauveau
- Subjects
Adult ,medicine.medical_specialty ,Pathology ,Lipodystrophy ,Chromosome Disorders ,Late onset ,Barraquer–Simons syndrome ,Epilepsy ,Glomerulonephritis ,Gene Duplication ,Intellectual Disability ,Internal medicine ,Gene duplication ,Genetics ,medicine ,Humans ,Abnormalities, Multiple ,Genetics (clinical) ,Chromosome Aberrations ,Comparative Genomic Hybridization ,business.industry ,Ichthyosis ,Partial Lipodystrophy ,General Medicine ,medicine.disease ,Chromosome Banding ,Endocrinology ,Chromosomes, Human, Pair 5 ,Female ,business - Abstract
We report here a 44 years-old patient with late-onset partial lipodystrophy, mental retardation, epilepsy, ichtyosis and glomerulonephritis, carrying a 10 Mb duplication of the chromosome 5q31.3–5q32.1 region detected by array-CGH.
- Published
- 2011
- Full Text
- View/download PDF
50. X-linked and autosomal recessive Hypohidrotic Ectodermal Dysplasia: genotypic-dental phenotypic findings
- Author
-
Hervé Lesot, Marie-Claire Vincent, A. Smahi, Nicolas Chassaing, Marie-Cécile Manière, Smail Hadj-Rabia, Christine Bodemer, Yves Alembik, M Molla, Patrick Calvas, Matthieu Schmittbuhl, and François Clauss
- Subjects
Adult ,Male ,Ectodermal dysplasia ,Adolescent ,Genotype ,Oligodontia ,Biology ,medicine.disease_cause ,Young Adult ,stomatognathic system ,Genetics ,medicine ,Humans ,Edar Receptor ,Hypohidrotic ectodermal dysplasia ,Child ,Genetics (clinical) ,X chromosome ,Retrospective Studies ,Mutation ,Ectodermal Dysplasia 1, Anhidrotic ,Tooth Abnormalities ,Ectodysplasins ,Middle Aged ,medicine.disease ,Phenotype ,Child, Preschool ,Ectodermal Dysplasia, Hypohidrotic, Autosomal Recessive ,Odontogenesis ,Female - Abstract
Hypohidrotic ectodermal dysplasia (HED) is characterized by abnormal development of ectodermal structures and its molecular etiology corresponds to mutations of EDA-EDAR genes. The aim of this study was first to investigate the genotype and dental phenotype associated with HED and second, to explore possible correlations between dental features and molecular defects. A total of 27 patients from 24 unrelated families exhibiting clinical signs of HED (22 XLHED males, 5 autosomal recessive forms) were retrospectively included. In the sample, 25 different mutations on EDA and EDAR genes were detected; 10 were not previously described. EDA and EDAR mutations corresponded respectively to 80.0% and 20.0% of the mutations. The dental phenotype analysis revealed a mean number of primary and permanent missing teeth ranging respectively from 14.5 (4-20) to 22.5 (10-28); the majority of the patients exhibited dysmorphic teeth. Overall, no differential expression in the degree of oligodontia according to either the mutated gene, the mutated functional sub-domains, or the mutation type, could be observed. Nevertheless, the furin group exhibited severe phenotypes unobserved in the TNF group. Significant differences in the number of some primary missing teeth (incisor and canine) related to EDA-EDAR genes defects were detected for the first time between XLHED and autosomal recessive HED, suggesting differential local effects of EDA-EDAR genes during odontogenesis. The present genotypic-phenotypic findings may add to the knowledge of the consequences of the molecular dysfunction of EDA-NF-kB in odontogenesis, and could be helpful in genetic counseling to distinguish autosomal forms from other HED syndromes.
- Published
- 2010
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.