1. Non-invasive preimplantation genetic testing (niPGT): the next revolution in reproductive genetics?
- Author
-
Leaver M and Wells D
- Subjects
- Aneuploidy, Biopsy, Blastocyst physiology, Culture Media, Female, Humans, Pregnancy, Reproduction, Chromosome Aberrations, DNA analysis, Genetic Testing methods, Preimplantation Diagnosis methods
- Abstract
Background: Preimplantation genetic testing (PGT) encompasses methods that allow embryos to be tested for severe inherited conditions or for chromosome abnormalities, relevant to embryo health and viability. In order to obtain embryonic genetic material for analysis, a biopsy is required, involving the removal of one or more cells. This invasive procedure greatly increases the costs of PGT and there have been concerns that embryo viability could be compromised in some cases. The recent discovery of DNA within the blastocoele fluid (BF) of blastocysts and in spent embryo culture media (SCM) has led to interest in the development of non-invasive methods of PGT (niPGT)., Objective and Rationale: This review evaluates the current scientific evidence regarding non-invasive genetic assessment of preimplantation embryos. The success of different PGT methodologies in collecting and analysing extra-embryonic DNA is evaluated, and consideration is given to the potential biological and technical hindrances to obtaining a reliable clinical diagnosis., Search Methods: Original research and review papers concerning niPGT were sourced by searching PubMed and Google Scholar databases until July 2019. Searches comprised the keywords: 'non-invasive'; 'cell-free DNA'; 'blastocentesis'; 'blastocoel fluid'; 'spent culture media'; 'embryo culture medium'; 'preimplantation genetic testing'; 'preimplantation genetic diagnosis'; 'preimplantation genetic screening'; and 'aneuploidy'., Outcomes: Embryonic DNA is frequently detectable in BF and SCM of embryos produced during IVF treatment. Initial studies have achieved some success when performing cytogenetic and molecular genetic analysis. However, in many cases, the efficiency has been restricted by technical complications associated with the low quantity and quality of the DNA. Reported levels of ploidy agreement between SCM/BF samples and biopsied embryonic cells vary widely. In some cases, a discrepancy with respect to cytogenetic data obtained after trophectoderm biopsy may be attributable to embryonic mosaicism or DNA contamination (usually of maternal origin). Some research indicates that aneuploid cells are preferentially eliminated from the embryo, suggesting that their DNA might be over-represented in SCM and BF samples; this hypothesis requires further investigation., Wider Implications: Available data suggest that BF and SCM samples frequently provide DNA templates suitable for genetic analyses, offering a potential means of PGT that is less expensive than traditional methods, requires less micromanipulation skill and poses a lower risk to embryos. Critically, DNA isolation and amplification protocols must be optimised to reproducibly obtain an accurate clinical diagnosis, whilst minimising the impact of confounding factors such as contamination. Further investigations are required to understand the mechanisms underlying the release of embryonic DNA and to determine the extent to which this material reflects the true genetic status of the corresponding embryo. Currently, the clinic al potential of niPGT remains unknown., (© The Author(s) 2019. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2020
- Full Text
- View/download PDF