1. A theoretical model of Dark Energy Stars in Einstein-Gauss-Bonnet Gravity
- Author
-
Malaver, M., Kasmaei, H. D., Iyer, R., Sadhukhan, S., and Kar, A.
- Subjects
General Relativity and Quantum Cosmology - Abstract
Dark energy stars research is an issue of great interest since recent astronomical observations with respect to measurements in distant supernovas, cosmic microwave background and weak gravitational lensing confirm that the universe is undergoing a phase of accelerated expansion and this cosmological behavior is caused by the presence of a cosmic fluid which has a strong negative pressure that allows to explain the expanding universe. In this paper, we obtained new relativistic stellar configurations within the framework of Einstein-Gauss-Bonnet (EGB) gravity considering negative anisotropic pressures and the equation of state pr={\omega}\r{ho} where pr is the radial pressure, {\omega} is the dark energy parameter, and \r{ho} is the dark energy density. We have chosen a modified version of metric potential proposed by Korkina-Orlyanskii (1991). For the new solutions we checked that the radial pressure, metric coefficients, energy density and anisotropy are well defined and are regular in the interior of the star and are dependent of the values of the Gauss-Bonnet coupling constant. The solutions found can be used in the development of dark energy stars models satisfying all physical acceptability conditions, but the causality condition and strong energy condition cannot be satisfied., Comment: 26 pages, 10 figures
- Published
- 2021