4 results on '"Coline Adda"'
Search Results
2. How a dc Electric Field Drives Mott Insulators Out of Equilibrium
- Author
-
Alberto Camjayi, Stéphane Cordier, Laurent Cario, P. Diener, Marie-Paule Besland, Coline Adda, Benoit Corraze, Madec Querré, Marcelo J. Rozenberg, Maryline Guilloux-Viry, Etienne Janod, Institut des Matériaux Jean Rouxel (IMN), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Ecole Polytechnique de l'Université de Nantes (EPUN), Université de Nantes (UN)-Université de Nantes (UN), Laboratoire de Chimie du solide et inorganique moléculaire (LCSIM), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR), Institut des Sciences Chimiques de Rennes (ISCR), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), 16-CE30-0018, Agence Nationale de la Recherche, Région Pays de la Loire, pari scientifique Neuro-Mott, ANR-16-CE30-0018,ELASTICA,Cooperativité Elastique Photo-Induite dans des Matériaux Bistables avec Changement de Volume(2016), Université de Nantes (UN)-Université de Nantes (UN)-Ecole Polytechnique de l'Université de Nantes (EPUN), Université de Nantes (UN)-Université de Nantes (UN)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR), and Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
INSULATOR ,Ciencias Físicas ,Electrical breakdown ,General Physics and Astronomy ,Insulator (electricity) ,02 engineering and technology ,01 natural sciences ,purl.org/becyt/ford/1 [https] ,Electric field ,0103 physical sciences ,010306 general physics ,MOTT ,ComputingMilieux_MISCELLANEOUS ,Physics ,Resistive touchscreen ,OUT ,Condensed matter physics ,Mott insulator ,purl.org/becyt/ford/1.3 [https] ,021001 nanoscience & nanotechnology ,EQUILIBRIUM ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Microscopic theory ,0210 nano-technology ,Hot electron ,CIENCIAS NATURALES Y EXACTAS ,Física de los Materiales Condensados - Abstract
Out of equilibrium phenomena are a major issue of modern physics. In particular, correlated materials such as Mott insulators experience fascinating long-lived exotic states under a strong electric field. Yet, the origin of their destabilization by the electric field is not elucidated. Here we present a comprehensive study of the electrical response of canonical Mott insulators GaM4Q8 (M=V, Nb, Ta, Mo; Q=S, Se) in the context of a microscopic theory of electrical breakdown where in-gap states allow for a description in terms of a two-temperature model. Our results show how the nonlinearities and the resistive transition originate from a massive creation of hot electrons under an electric field. These results give new insights for the control of the long-lived states reached under an electric field in these systems which has recently open the way to new functionalities used in neuromorphic applications. Fil: Diener, P.. Universite de Nantes; Francia Fil: Janod, E.. Universite de Nantes; Francia Fil: Corraze, B.. Universite de Nantes; Francia Fil: Querré, M.. Universite de Rennes I. Institut Des Sciences Chimiques de Rennes.; Francia. Universite de Nantes; Francia Fil: Adda, C.. Universite de Nantes; Francia Fil: Guilloux Viry, M.. Universite de Rennes I. Institut Des Sciences Chimiques de Rennes.; Francia Fil: Cordier, S.. Universite de Rennes I. Institut Des Sciences Chimiques de Rennes.; Francia Fil: Camjayi, Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Rozenberg, Marcelo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Université Paris Sud; Francia Fil: Besland, M. P.. Universite de Nantes; Francia Fil: Cario, L.. Universite de Nantes; Francia
- Published
- 2018
- Full Text
- View/download PDF
3. Dirac Cones in two-dimensional conjugated polymer networks
- Author
-
Jean Joseph Adjizian, Philipp Wagner, Patrick R. Briddon, Christopher P. Ewels, Coline Adda, Bernard Humbert, and Jean-Luc Duvail
- Subjects
Physics ,chemistry.chemical_classification ,Multidisciplinary ,Valence (chemistry) ,Graphene ,Fermi level ,Doping ,General Physics and Astronomy ,Nanotechnology ,General Chemistry ,Conical surface ,Polymer ,Conjugated system ,General Biochemistry, Genetics and Molecular Biology ,law.invention ,symbols.namesake ,chemistry ,Chemical physics ,law ,Topological insulator ,symbols - Abstract
Linear electronic band dispersion and the associated Dirac physics has to date been limited to special-case materials, notably graphene and the surfaces of three-dimensional (3D) topological insulators. Here we report that it is possible to create two-dimensional fully conjugated polymer networks with corresponding conical valence and conduction bands and linear energy dispersion at the Fermi level. This is possible for a wide range of polymer types and connectors, resulting in a versatile new family of experimentally realisable materials with unique tuneable electronic properties. We demonstrate their stability on substrates and possibilities for doping and Dirac cone distortion. Notably, the cones can be maintained in 3D-layered crystals. Resembling covalent organic frameworks, these materials represent a potentially exciting new field combining the unique Dirac physics of graphene with the structural flexibility and design opportunities of organic-conjugated polymer chemistry.
- Published
- 2014
4. Mott insulators: A large class of materials for Leaky Integrate and Fire (LIF) artificial neuron
- Author
-
Benoit Corraze, Etienne Janod, Coline Adda, Julien Tranchant, Pablo Stoliar, Dominique Lorcy, P. Diener, Marie-Paule Besland, Agathe Filatre-Furcate, Laurent Cario, Marc Fourmigué, Institut des Matériaux Jean Rouxel (IMN), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Ecole Polytechnique de l'Université de Nantes (EPUN), Université de Nantes (UN)-Université de Nantes (UN)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut des Sciences Chimiques de Rennes (ISCR), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), 12-BS07-0032, Agence Nationale de Recherches sur le Sida et les Hépatites Virales, ANR-12-BS07-0032,GOLD-RRAM,Complexes dithiolene radicalaires d'or comme isolants de Mott pour le stockage de l'information(2012), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Ecole Polytechnique de l'Université de Nantes (EPUN), Université de Nantes (UN)-Université de Nantes (UN), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), and Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)
- Subjects
Physics ,Field (physics) ,business.industry ,Mott insulator ,General Physics and Astronomy ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,Mott transition ,Physical phenomena, Mott transitions, Molecular systems, Integrate and fires, Common features, Artificial neurons, Sulfur compounds, Neurons, Ground state, Mott insulators, Resistive switching, Two-terminal devices, Electric fields ,Electric field ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Artificial neuron ,Optoelectronics ,Metal–insulator transition ,Biomimetics ,0210 nano-technology ,Ground state ,business - Abstract
International audience; A major challenge in the field of neurocomputing is to mimic the brain's behavior by implementing artificial synapses and neurons directly in hardware. Toward that purpose, many researchers are exploring the potential of new materials and new physical phenomena. Recently, a new concept of the Leaky Integrate and Fire (LIF) artificial neuron was proposed based on the electric Mott transition in the inorganic Mott insulator GaTa4Se8. In this work, we report on the LIF behavior in simple two-terminal devices in three chemically very different compounds, the oxide (V0.89Cr0.11)2O3, the sulfide GaMo4S8, and the molecular system [Au(iPr-thiazdt)2] (C12H14AuN2S8), but sharing a common feature, their Mott insulator ground state. In all these devices, the application of an electric field induces a volatile resistive switching and a remarkable LIF behavior under a train of pulses. It suggests that the Mott LIF neuron is a general concept that can be extended to the large class of Mott insulators. © 2018 Author(s).
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.