1. Near-thermo-neutral electron recombination of titanium oxide ions
- Author
-
Naman Jain, Ábel Kálosi, Felix Nuesslein, Daniel Paul, Patrick Wilhelm, Shaun G. Ard, Manfred Grieser, Robert von Hahn, Michael C. Heaven, Evangelos Miliordos, Dominique Maffucci, Nicholas S. Shuman, Albert A. Viggiano, Andreas Wolf, and Oldřich Novotný
- Subjects
Speichertechnik - Abteilung Blaum ,General Physics and Astronomy ,Physical and Theoretical Chemistry - Abstract
While the dissociative recombination (DR) of ground-state molecular ions with low-energy free electrons is generally known to be exothermic, it has been predicted to be endothermic for a class of transition-metal oxide ions. To understand this unusual case, the electron recombination of titanium oxide ions (TiO+) with electrons has been experimentally investigated using the Cryogenic Storage Ring. In its low radiation field, the TiO+ ions relax internally to low rotational excitation (≲100 K). Under controlled collision energies down to [Formula: see text] meV within the merged electron and ion beam configuration, fragment imaging has been applied to determine the kinetic energy released to Ti and O neutral reaction products. Detailed analysis of the fragment imaging data considering the reactant and product excitation channels reveals an endothermicity for the TiO+ dissociative electron recombination of (+4 ± 10) meV. This result improves the accuracy of the energy balance by a factor of 7 compared to that found indirectly from hitherto known molecular properties. Conversely, the present endothermicity yields improved dissociation energy values for D0(TiO) = (6.824 ± 0.010) eV and D0(TiO+) = (6.832 ± 0.010) eV. All thermochemistry values were compared to new coupled-cluster calculations and found to be in good agreement. Moreover, absolute rate coefficients for the electron recombination of rotationally relaxed ions have been measured, yielding an upper limit of 1 × 10−7 cm3 s−1 for typical conditions of cold astrophysical media. Strong variation of the DR rate with the TiO+ internal excitation is predicted. Furthermore, potential energy curves for TiO+ and TiO have been calculated using a multi-reference configuration interaction method to constrain quantum-dynamical paths driving the observed TiO+ electron recombination.
- Published
- 2023