1. Long-Lived Triplet Excited State in a Heterogeneous Modified Carbon Nitride Photocatalyst
- Author
-
Adam J. Rieth, Benjamin C. M. Martindale, Daniel G. Nocera, and Yangzhong Qin
- Subjects
chemistry.chemical_element ,General Chemistry ,Nitride ,010402 general chemistry ,01 natural sciences ,7. Clean energy ,Biochemistry ,Redox ,Catalysis ,0104 chemical sciences ,chemistry.chemical_compound ,Electron transfer ,Colloid and Surface Chemistry ,chemistry ,Chemical physics ,Excited state ,Photocatalysis ,Particle size ,Carbon nitride ,Carbon - Abstract
Heterogeneous carbon nitrides have numerous advantages as photocatalysts, including strong light absorption, tunable band edges, and scalability, but their performance and continued development are limited by fast charge recombination and an under-developed mechanistic understanding of photodriven interfacial electron transfer. These shortcomings are a result of complex photophysics, leading to rate asynchrony between oxidation and reduction, as well as redox processes driven out of electronic trap states rather than excited states. We show that a well-defined triplet excited state in cyanamide-modified carbon nitride is realized with appropriately sized particles. The utility of this long-lived excited state is demonstrated by its ability to drive a hydroamidation photoredox cycle. By the tuning of the particle size of CNx, the oxidation-reduction photochemistry of carbon nitride may be balanced to achieve a redox-neutral closed photocatalytic cycle. These results uncover a triplet excited state chemistry for appropriately sized CNx particles that preludes a rich energy and electron transfer photochemistry for these materials.
- Published
- 2021
- Full Text
- View/download PDF