1. Enhancement of sulfonated poly(ether ether ketone)-based proton exchange membranes doped with different ionic liquids cations
- Author
-
Emilse M.A. Martini, Ernesto C. Pereira, Edson R. Leite, Letícia Guerreiro da Trindade, Josiane Carneiro Souza, Letícia Zanchet, Universidade Federal de São Carlos (UFSCar), Universidade Estadual Paulista (Unesp), and Universidade Federal do Rio Grande do Sul
- Subjects
Materials science ,General Chemical Engineering ,General Physics and Astronomy ,Proton exchange membrane fuel cell ,02 engineering and technology ,Ionic liquid ,Conductivity ,010402 general chemistry ,Electrochemistry ,01 natural sciences ,chemistry.chemical_compound ,Sulfonated poly(ether ether ketone) ,General Materials Science ,chemistry.chemical_classification ,Dopant ,Proton exchange membranes ,Fuel cell ,Doping ,General Engineering ,Polymer ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Membrane ,chemistry ,Chemical engineering ,0210 nano-technology - Abstract
Made available in DSpace on 2020-12-12T01:30:24Z (GMT). No. of bitstreams: 0 Previous issue date: 2020-01-01 Herein, to balance the overall performance of SPEEK membrane, the imidazolium hydrogen sulfate (Im.HSO4), 1-methylimidazolium hydrogen sulfate (MI.HSO4), and 1-butyl-3-methylimidazolium hydrogen sulfate (BMI.HSO4) ionic liquids (ILs) were used as dopants in polymer matrix. A series of SPEEK/ionic liquid composite membranes were successfully fabricated by casting method and evaluated. Comparative studies showed that the membranes doped with 5 wt.% of MI.HSO4 or BMI.HSO4 ILs showed an increase in the proton conductivity of 50% and 30% at 80 °C, respectively, compared with the pristine SPEEK membrane. The proton exchange membrane fuel cell (PEMFC) performance demonstrated that the membrane doped with 5 wt.% of BMI.HSO4 IL (SBMI5) has the highest current density value and the highest power density without loss of performance as temperature increases. This result indicates that this membrane is promising for fuel cells application. Chemistry Department Federal University of São Carlos, P. O. Box 676 Department of Chemistry Universidade Estadual Paulista–Unesp, P.O. Box 473 LRC-Institute of Chemistry Universidade Federal do Rio Grande do Sul, P. O. Box 15003 Department of Chemistry Universidade Estadual Paulista–Unesp, P.O. Box 473
- Published
- 2020
- Full Text
- View/download PDF