1. Gene Regulatory Network Inference Using Convolutional Neural Networks from scRNA-seq Data.
- Author
-
Mao G, Pang Z, Zuo K, and Liu J
- Subjects
- Single-Cell Gene Expression Analysis, Single-Cell Analysis methods, Neural Networks, Computer, Sequence Analysis, RNA methods, Gene Regulatory Networks, Gene Expression Profiling methods
- Abstract
In recent years, with the rapid development of single-cell sequencing technology, this brings new opportunities and challenges to reconstruct gene regulatory networks. On the one hand, scRNA-seq data reveal statistical information of gene expression at single-cell resolution, which is beneficial to construct gene expression regulatory networks. On the other hand, the noise and dropout of single-cell data bring great difficulties to the analysis of scRNA-seq data, resulting in lower accuracy of gene regulatory networks reconstructed by traditional methods. In this article, we propose a novel supervised convolutional neural network (CNNSE), which can extract gene expression information from 2D co-expression matrices of gene doublets and identify interactions between genes. Our method can avoid the loss of extreme point interference by constructing a 2D co-expression matrix of gene pairs and significantly improve the regulation precision between gene pairs. And the CNNSE model is able to obtain detailed and high-level semantic information from the 2D co-expression matrix. Our method achieves satisfactory results on simulated data [accuracy (ACC): 0.712, F1: 0.724]. On two real scRNA-seq datasets, our method exhibits higher stability and accuracy in inference tasks compared with other existing gene regulatory network inference algorithms.
- Published
- 2023
- Full Text
- View/download PDF