1. Redox-dependent gene regulation in Rhodobacter sphaeroides 2.4.1(T): effects on dimethyl sulfoxide reductase (dor) gene expression.
- Author
-
Mouncey NJ and Kaplan S
- Subjects
- Electron Transport Complex IV genetics, Iron-Sulfur Proteins genetics, Lac Operon, Membrane Proteins genetics, Oxidation-Reduction, Oxidoreductases metabolism, Bacterial Proteins, Gene Expression Regulation, Bacterial, Gene Expression Regulation, Enzymologic, Oxidoreductases genetics, Rhodobacter sphaeroides genetics
- Abstract
The ability of Rhodobacter sphaeroides 2.4.1(T) to respire anaerobically with the alternative electron acceptor dimethyl sulfoxide (DMSO) or trimethylamine N-oxide (TMAO) is manifested by the molybdoenzyme DMSO reductase, which is encoded by genes of the dor locus. Previously, we have demonstrated that dor expression is regulated in response to lowered oxygen tensions and the presence of DMSO or TMAO in the growth medium. Several regulatory proteins have been identified as key players in this regulatory cascade: FnrL, DorS-DorR, and DorX-DorY. To further examine the role of redox potentiation in the regulation of dor expression, we measured DMSO reductase synthesis and beta-galactosidase activity from dor::lacZ fusions in strains containing mutations in the redox-active proteins CcoP and RdxB, which have previously been implicated in the generation of a redox signal affecting photosynthesis gene expression. Unlike the wild-type strain, both mutants were able to synthesize DMSO reductase under strictly aerobic conditions, even in the absence of DMSO. When cells were grown photoheterotrophically, dorC::lacZ expression was stimulated by increasing light intensity in the CcoP mutant, whereas it is normally repressed in the wild-type strain under such conditions. Furthermore, the expression of genes encoding the DorS sensor kinase and DorR response regulator proteins was also affected by the ccoP mutation. By using CcoP-DorR and CcoP-DorY double mutants, it was shown that the DorR protein is strictly required for altered dor expression in CcoP mutants. These results further demonstrate a role for redox-generated responses in the expression of genes encoding DMSO reductase in R. sphaeroides and identify the DorS-DorR proteins as a redox-dependent regulatory system controlling dor expression.
- Published
- 1998
- Full Text
- View/download PDF