1. Identifying gene targets for brain-related traits using transcriptomic and methylomic data from blood
- Author
-
Qi, Ting, Wu, Yang, Zeng, Jian, Zhang, Futao, Xue, Angli, Jiang, Longda, Zhu, Zhihong, Kemper, Kathryn, Yengo, Loic, Zheng, Zhili, Agbessi, Mawussé, Ahsan, Habibul, Alves, Isabel, Andiappan, Anand, Awadalla, Philip, Battle, Alexis, Beutner, Frank, Jan Bonder, Marc, Boomsma, Dorret, Christiansen, Mark, Claringbould, Annique, Deelen, Patrick, Esko, Tõnu, Favé, Marie Julie, Franke, Lude, Frayling, Timothy, Gharib, Sina, Gibson, Gregory, Hemani, Gibran, Jansen, Rick, Kähönen, Mika, Kalnapenkis, Anette, Kasela, Silva, Kettunen, Johannes, Kim, Yungil, Kirsten, Holger, Kovacs, Peter, Krohn, Knut, Kronberg-Guzman, Jaanika, Kukushkina, Viktorija, Kutalik, Zoltan, Lee, Bernett, Lehtimäki, Terho, Loeffler, Markus, Marigorta, Urko M., Metspalu, Andres, Milani, Lili, Müller-Nurasyid, Martina, Nauck, Matthias, Nivard, Michel, Penninx, Brenda, Perola, Markus, Pervjakova, Natalia, Pierce, Brandon, Powell, Joseph, Prokisch, Holger, Psaty, Bruce, Raitakari, Olli, Ring, Susan, Ripatti, Samuli, Rotzschke, Olaf, Ruëger, Sina, Saha, Ashis, Scholz, Markus, Schramm, Katharina, Seppälä, Ilkka, Stumvoll, Michael, Sullivan, Patrick, Teumer, Alexander, Thiery, Joachim, Tong, Lin, Tönjes, Anke, Van Dongen, Jenny, Van Meurs, Joyce, Verlouw, Joost, Völker, Uwe, Võsa, Urmo, Yaghootkar, Hanieh, Zeng, Biao, Marioni, Riccardo E., Montgomery, Grant W., Deary, Ian J., Wray, Naomi R., Visscher, Peter M., McRae, Allan F., Yang, Jian, Biological Psychology, APH - Mental Health, APH - Methodology, Amsterdam Neuroscience - Mood, Anxiety, Psychosis, Stress & Sleep, Integrative Neurophysiology, APH - Personalized Medicine, Psychiatry, APH - Digital Health, Internal Medicine, Institute for Molecular Medicine Finland, University Management, Centre of Excellence in Complex Disease Genetics, Department of Public Health, Doctoral Programme in Population Health, Samuli Olli Ripatti / Principal Investigator, Biostatistics Helsinki, and Complex Disease Genetics
- Subjects
0301 basic medicine ,Netherlands Twin Register (NTR) ,General Physics and Astronomy ,Genome-wide association study ,data set ,Transcriptome ,0302 clinical medicine ,quantitative trait locus ,expression quantitative trait locus ,genetics ,Tissue Distribution ,lcsh:Science ,Promoter Regions, Genetic ,Regulation of gene expression ,Genetics ,0303 health sciences ,Multidisciplinary ,DNA methylation ,quantitative analysis ,Brain ,Phenotype ,sample size ,Enhancer Elements, Genetic ,CpG site ,genetic marker ,enhancer region ,Genetic Markers ,Science ,Quantitative Trait Loci ,Quantitative trait locus ,Biology ,General Biochemistry, Genetics and Molecular Biology ,Article ,03 medical and health sciences ,promoter region ,blood ,genetics of the nervous system ,MD Multidisciplinary ,Humans ,human ,gene ,Gene ,030304 developmental biology ,dNaM ,General Chemistry ,DNA ,DNA Methylation ,major clinical study ,030104 developmental biology ,Gene Expression Regulation ,Genetic marker ,Expression quantitative trait loci ,genome-wide association studies ,gene expression ,RNA ,lcsh:Q ,methylation ,3111 Biomedicine ,gene regulation ,metabolism ,030217 neurology & neurosurgery ,meta analysis ,Genome-Wide Association Study - Abstract
Understanding the difference in genetic regulation of gene expression between brain and blood is important for discovering genes for brain-related traits and disorders. Here, we estimate the correlation of genetic effects at the top-associated cis-expression or -DNA methylation (DNAm) quantitative trait loci (cis-eQTLs or cis-mQTLs) between brain and blood (rb). Using publicly available data, we find that genetic effects at the top cis-eQTLs or mQTLs are highly correlated between independent brain and blood samples (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat r_b = 0.70$$\end{document}r^b=0.70 for cis-eQTLs and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat r_ b = 0.78$$\end{document}r^b=0.78 for cis-mQTLs). Using meta-analyzed brain cis-eQTL/mQTL data (n = 526 to 1194), we identify 61 genes and 167 DNAm sites associated with four brain-related phenotypes, most of which are a subset of the discoveries (97 genes and 295 DNAm sites) using data from blood with larger sample sizes (n = 1980 to 14,115). Our results demonstrate the gain of power in gene discovery for brain-related phenotypes using blood cis-eQTL/mQTL data with large sample sizes., To comprehend the genetic regulatory mechanisms underlying brain-related traits in humans, Qi et al. estimate the correlation of expression and DNA methylation QTL effects in cis between blood and brain and show that using blood eQTL/mQTL data of large sample size can increase power in gene discovery for brain-related traits and diseases.
- Published
- 2018