5 results on '"Pittman, Gary S."'
Search Results
2. Tobacco exposure-related alterations in DNA methylation and gene expression in human monocytes: the Multi-Ethnic Study of Atherosclerosis (MESA).
- Author
-
Reynolds, Lindsay M., Lohman, Kurt, Pittman, Gary S., Barr, R. Graham, Chi, Gloria C., Kaufman, Joel, Wan, Ma, Bell, Douglas A., Blaha, Michael J., Rodriguez, Carlos J., and Liu, Yongmei
- Abstract
Alterations in DNA methylation and gene expression in blood leukocytes are potential biomarkers of harm and mediators of the deleterious effects of tobacco exposure. However, methodological issues, including the use of self-reported smoking status and mixed cell types have made previously identified alterations in DNA methylation and gene expression difficult to interpret. In this study, we examined associations of tobacco exposure with DNA methylation and gene expression, utilizing a biomarker of tobacco exposure (urine cotinine) and CD14+ purified monocyte samples from 934 participants of the community-based Multi-Ethnic Study of Atherosclerosis (MESA). Urine cotinine levels were measured using an immunoassay. DNA methylation and gene expression were measured with microarrays. Multivariate linear regression was used to test for associations adjusting for age, sex, race/ethnicity, education, and study site. Urine cotinine levels were associated with methylation of 176 CpGs [false discovery rate (FDR)<0.01]. Four CpGs not previously identified by studies of non-purified blood samples nominally replicated (Pvalue<0.05) with plasma cotinine-associated methylation in 128 independent monocyte samples. Urine cotinine levels associated with expression of 12 genes (FDR<0.01), including increased expression ofP2RY6(Beta ± standard error = 0.078 ± 0.008,P= 1.99 × 10−22), a gene previously identified to be involved in the release of pro-inflammatory cytokines. No cotinine-associated (FDR<0.01) methylation profiles significantly (FDR<0.01) correlated with cotinine-associated (FDR<0.01) gene expression profiles. In conclusion, our findings i) identify potential monocyte-specific smoking-associated methylation patterns and ii) suggest that alterations in methylation may not be a main mechanism regulating gene expression in monocytes in response to cigarette smoking. [ABSTRACT FROM PUBLISHER]
- Published
- 2017
- Full Text
- View/download PDF
3. Distinct Epigenetic Effects of Tobacco Smoking in Whole Blood and among Leukocyte Subtypes.
- Author
-
Su, Dan, Wang, Xuting, Campbell, Michelle R., Porter, Devin K., Pittman, Gary S., Bennett, Brian D., Wan, Ma, Englert, Neal A., Crowl, Christopher L., Gimple, Ryan N., Adamski, Kelly N., Huang, Zhiqing, Murphy, Susan K., and Bell, Douglas A.
- Subjects
TOBACCO smoke ,EPIGENETICS ,LEUCOCYTES ,DNA methylation ,GENE expression ,ETIOLOGY of diseases - Abstract
Tobacco smoke exposure dramatically alters DNA methylation in blood cells and may mediate smoking-associated complex diseases through effects on immune cell function. However, knowledge of smoking effects in specific leukocyte subtypes is limited. To better characterize smoking–associated methylation changes in whole blood and leukocyte subtypes, we used Illumina 450K arrays and Reduced Representation Bisulfite Sequencing (RRBS) to assess genome-wide DNA methylation. Differential methylation analysis in whole blood DNA from 172 smokers and 81 nonsmokers revealed 738 CpGs, including 616 previously unreported CpGs, genome-wide significantly associated with current smoking (p <1.2x10
-7 , Bonferroni correction). Several CpGs (MTSS1, NKX6-2, BTG2) were associated with smoking duration among heavy smokers (>22 cigarettes/day, n = 86) which might relate to long-term heavy-smoking pathology. In purified leukocyte subtypes from an independent group of 20 smokers and 14 nonsmokers we further examined methylation and gene expression for selected genes among CD14+ monocytes, CD15+ granulocytes, CD19+ B cells, and CD2+ T cells. In 10 smokers and 10 nonsmokers we used RRBS to fine map differential methylation in CD4+ T cells, CD8+ T cells, CD14+, CD15+, CD19+, and CD56+ natural killer cells. Distinct cell-type differences in smoking-associated methylation and gene expression were identified. AHRR (cg05575921), ALPPL2 (cg21566642), GFI1 (cg09935388), IER3 (cg06126421) and F2RL3 (cg03636183) showed a distinct pattern of significant smoking-associated methylation differences across cell types: granulocytes> monocytes>> B cells. In contrast GPR15 (cg19859270) was highly significant in T and B cells and ITGAL (cg09099830) significant only in T cells. Numerous other CpGs displayed distinctive cell-type responses to tobacco smoke exposure that were not apparent in whole blood DNA. Assessing the overlap between these CpG sites and differential methylated regions (DMRs) with RRBS in 6 cell types, we confirmed cell-type specificity in the context of DMRs. We identified new CpGs associated with current smoking, pack-years, duration, and revealed unique profiles of smoking-associated DNA methylation and gene expression among immune cell types, providing potential clues to hematopoietic lineage-specific effects in disease etiology. [ABSTRACT FROM AUTHOR]- Published
- 2016
- Full Text
- View/download PDF
4. Genetic Variation and Antioxidant Response Gene Expression in the Bronchial Airway Epithelium of Smokers at Risk for Lung Cancer.
- Author
-
Xuting Wang, Chorley, Brian N., Pittman, Gary S., Kleeberger, Steven R., Brothers II, John, Gang Liu, Spira, Avrum, and Bell, Douglas A.
- Subjects
GENE expression ,EPITHELIUM ,LUNG cancer risk factors ,CIGARETTE smokers ,HETEROGENEITY ,EPITHELIAL cells ,BIOMARKERS ,GENOMICS ,HUMAN genetic variation ,BRONCHOSCOPY ,GENETIC polymorphisms ,DISEASES - Abstract
Prior microarray studies of smokers at high risk for lung cancer have demonstrated that heterogeneity in bronchial airway epithelial cell gene expression response to smoking can serve as an early diagnostic biomarker for lung cancer. As a first step in applying functional genomic analysis to population studies, we have examined the relationship between gene expression variation and genetic variation in a central molecular pathway (NRF2-mediated antioxidant response) associated with smoking exposure and lung cancer. We assessed global gene expression in histologically normal airway epithelial cells obtained at bronchoscopy from smokers who developed lung cancer (SC, n = 20), smokers without lung cancer (SNC, n = 24), and never smokers (NS, n = 8). Functional enrichment analysis showed that the NRF2-mediated, antioxidant response element (ARE)-regulated genes, were significantly lower in SC, when compared with expression levels in SNC. Importantly, we found that the expression of MAFG (a binding partner of NRF2) was correlated with the expression of ARE genes, suggesting MAFG levels may limit target gene induction. Bioinformatically we identified single nucleotide polymorphisms (SNPs) in putative ARE genes and to test the impact of genetic variation, we genotyped these putative regulatory SNPs and other tag SNPs in selected NRF2 pathway genes. Sequencing MAFG locus, we identified 30 novel SNPs and two were associated with either gene expression or lung cancer status among smokers. This work demonstrates an analysis approach that integrates bioinformatics pathway and transcription factor binding site analysis with genotype, gene expression and disease status to identify SNPs that may be associated with individual differences in gene expression and/or cancer status in smokers. These polymorphisms might ultimately contribute to lung cancer risk via their effect on the airway gene expression response to tobacco-smoke exposure. [ABSTRACT FROM AUTHOR]
- Published
- 2010
- Full Text
- View/download PDF
5. CYP1A1 and CYP1B1 genotypes, haplotypes, and TCDD-induced gene expression in subjects from Seveso, Italy
- Author
-
Landi, Maria Teresa, Bergen, Andrew W., Baccarelli, Andrea, Patterson, Donald G., Grassman, Jean, Ter-Minassian, Monica, Mocarelli, Paolo, Caporaso, Neil, Masten, Scott A., Pesatori, Angela C., Pittman, Gary S., and Bell, Douglas A.
- Subjects
- *
GENETIC polymorphisms , *GENE expression , *MESSENGER RNA , *LYMPHOCYTES - Abstract
Abstract: 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is highly toxic in experimental animals, and is known to induce cytochrome P450 (CYP) gene expression. We investigated the effect of CYP1A1 and CYP1B1 variant genotypes and haplotypes on CYP1A1 and CYP1B1 mRNA expression and ethoxyresorufin-O-deethylase (EROD) activity in lymphocytes from 121 subjects from the Seveso population, Italy, accidentally exposed to TCDD in 1976. The 3′UTR 3801T>C and I462V variants of CYP1A1 were present in 16% and 6% of the subjects, respectively. The frequency of CYP1B1 variants was 85.2% for L432V, 49.6% for R48G and A119S, and 28.7% for N453S. There was complete linkage disequilibrium (LD) among the CYP1B1 variant loci (D′=-1) and high LD among the CYP1A1 loci (D′=0.86). Gene expression measured by RT-PCR did not vary by CYP1B1 genotype in uncultured lymphocytes. However, when lymphocytes were treated in vitro with 10nM TCDD, CYP1B1 and CYP1A1 mRNA expression was strongly induced and modified by CYP variant alleles. Specifically, the CYP1B1*3 haplotype (L432V) was associated with increased CYP1B1 mRNA expression (P=0.03), following an additive model; the CYP1A1 I462V polymorphism was positively, although not significantly, associated with CYP1A1 expression. The CYP1B1*3 variant may have affected CYP1B1 expression in subjects highly and acutely exposed to dioxin at the time of the accident. Although based on small number of subjects, a slight increase in eczema (P=0.05, n=8) and urticaria (P=0.02, n=2) was observed 20 years after the accident in subjects carrying the CYP1B1*3 allele. Genetic variation in cytochrome P450 induction may identify subjects with variable responsiveness to TCDD and potentially increased risk of disease. [Copyright &y& Elsevier]
- Published
- 2005
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.