1. mTOR regulates the expression of DNA damage response enzymes in long-lived Snell dwarf, GHRKO, and PAPPA-KO mice.
- Author
-
Dominick, Graham, Bowman, Jacqueline, Li, Xinna, Miller, Richard A., and Garcia, Gonzalo G.
- Subjects
MTOR protein ,GENETIC regulation ,CELLULAR aging ,DNA damage ,DNA repair ,SOMATOTROPIN receptors ,LABORATORY mice - Abstract
Studies of the mTOR pathway have prompted speculation that diminished mTOR complex-1 (mTORC1) function may be involved in controlling the aging process. Our previous studies have shown diminished mTORC1 activity in tissues of three long-lived mutant mice: Snell dwarf mice, growth hormone receptor gene disrupted mice (GHRKO), and in this article, mice deficient in the pregnancy-associated protein-A (PAPPA-KO). The ways in which lower mTOR signals slow aging and age-related diseases are, however, not well characterized. Here, we show that Snell, GHKRO, and PAPPA-KO mice express high levels of two proteins involved in DNA repair, O-6-methylguanine-DNA methyltransferase (MGMT) and N-myc downstream-regulated gene 1 (NDRG1). Furthermore, we report that lowering mTOR enhances MGMT and NDRG1 protein expression via post-transcriptional mechanisms. We show that the CCR4-NOT complex, a post-transcriptional regulator of gene expression, is downstream of the mTORC1 pathway and may be responsible for the upregulation of MGMT and NDRG1 in all three varieties of long-lived mice. Our data thus suggest a novel link between DNA repair and mTOR signaling via post-transcriptional regulation involving specific alteration in the CCR4-NOT complex, whose modulation could control multiple aspects of the aging process. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF